Show simple item record

dc.contributor.authorYu, Jieen_US
dc.contributor.authorWang, Hong Jiangen_US
dc.contributor.authorPan, Jeng Shyangen_US
dc.contributor.authorChang, Kuo Chien_US
dc.contributor.authorNgô, Trường Giangen_US
dc.contributor.authorNguyễn, Trọng Thểen_US
dc.date.accessioned2021-11-26T01:33:14Z
dc.date.available2021-11-26T01:33:14Z
dc.date.issued2021en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/34467
dc.description.abstractThis study suggests a new metaheuristic algorithm for global optimization, based on parallel hybridizing the swarm optimization(PSO) andGravitational search algorithm (GSA). Subgroups of the population are formed by dividing the swarm’s community. Communication between the subsets can be developed by adding strategies for the mutation. Twenty-three benchmark functions are used to test its performance to verify the feasibility of the proposed algorithm. Compared with the PSO, GSA, and parallel PSO (PPSO), the findings of the proposed algorithm reveal that the proposed PPSOGSA achieves higher precision than other competitor algorithms.en_US
dc.format.extent11 tr.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectParallel PSOGSA algorithmen_US
dc.subjectMutation strategyen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectGravitational search algorithmen_US
dc.titleA New Optimization Based on Parallelizing Hybrid PSOGSA Algorithmen_US
dc.typeArticleen_US
dc.departmentBài báo khoa họcen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record