• Login
    View Item 
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Progress in Nonlinear Nano-Optics

    Thumbnail
    View/Open
    Progress-in-Nonlinear-Nano-618.pdf (10.66Mb)
    Date
    2015
    Author
    Sakabe, Shuji
    Lienau, Christoph
    Grunwald, Rüdiger
    Metadata
    Show full item record
    Abstract
    This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
    URI
    https://lib.hpu.edu.vn/handle/123456789/29927
    Collections
    • Technology [3206]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV