• Login
    View Item 
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Direction in Mathematics for Materials Science

    Thumbnail
    View/Open
    315_A_New_Direction_in_Mathematics_for_Materials_Science.pdf (3.708Mb)
    Date
    2016
    Author
    Ikeda, Susumu
    Kotani, Motoko
    Metadata
    Show full item record
    Abstract
    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies―for example, computational homology applied to structural analysis of glassy materials, stochastic models for the formation process of materials, new geometric measures for finite carbon nanotube molecules, mathematical technique predicting a molecular magnet, and network analysis of nanoporous materials. The details of these works will be shown in the subsequent volumes of this SpringerBriefs in the Mathematics of Materials series by the individual authors. The posterior section of the book presents how breakthroughs based on mathematics–materials science collaborations can emerge. The authors' argument is supported by the experiences at the Advanced Institute for Materials Research (AIMR), where many researchers from various fields gathered and tackled interdisciplinary research.
    URI
    https://lib.hpu.edu.vn/handle/123456789/26220
    Collections
    • Technology [3206]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV