Show simple item record

dc.contributor.authorOliehoek, Frans A.en_US
dc.contributor.authorAmato, Christopheren_US
dc.date.accessioned2017-06-26T03:28:16Z
dc.date.available2017-06-26T03:28:16Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-319-28927-4en_US
dc.identifier.isbn978-3-319-28929-8en_US
dc.identifier.otherHPU5160195en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/25973
dc.description.abstractThis book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.en_US
dc.format.extent146 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectDecentralized POMDPsen_US
dc.subjectDecentralized partially observable Markov decision processesen_US
dc.subjectIntelligent Systemsen_US
dc.titleA Concise Introduction to Decentralized POMDPsen_US
dc.typeBooken_US
dc.size2,372Kben_US
dc.departmentTechnologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record