Show simple item record

dc.contributor.authorStenger, Franken_US
dc.contributor.authorTucker, Donen_US
dc.contributor.authorBaumann, Gerden_US
dc.date.accessioned2017-06-16T04:03:02Z
dc.date.available2017-06-16T04:03:02Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-319-27524-6en_US
dc.identifier.otherHPU5160058en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/25412
dc.description.abstractIn this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier–Stokespartial differential equations on (x, y, z, t) ∈ ℝ3 × [0, T]. Initially converting the PDE to a system of integral equations, the authors then describe spaces A of analytic functions that house solutions of this equation, and show that these spaces of analytic functions are dense in the spaces S of rapidly decreasing and infinitely differentiable functions. This method benefits from the following advantages: The functions of S are nearly always conceptual rather than explicitInitial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same propertiesWhen methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rateEnables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error bounds Following the proofs of denseness, the authors prove the existence of a solution of the integral equations in the space of functions A ∩ ℝ3 × [0, T], and provide an explicit novel algorithm based on Sinc approximation and Picard–like iteration for computing the solution. Additionally, the authors include appendices that provide a custom Mathematica program for computing solutions based on the explicit algorithmic approximation procedure, and which supply explicit illustrations of these computed solutions.en_US
dc.format.extent232 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectNavier–Stokes Equationsen_US
dc.subjectR3 × [0, T]en_US
dc.subjectPDEen_US
dc.titleNavier–Stokes Equations on R3 × [0, T]en_US
dc.typeBooken_US
dc.size3,734Kben_US
dc.departmentTechnologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record