• Login
    View Item 
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust range image registration: using genetic algorithms and the surface interpenetration measure

    Thumbnail
    View/Open
    Robust-range-image-registration-1281.pdf (14.85Mb)
    Date
    2004
    Author
    Silva, Luciano
    Metadata
    Show full item record
    Abstract
    This book addresses the range image registration problem for automatic 3D model construction. The focus is on obtaining highly precise alignments between different view pairs of the same object to avoid 3D model distortions, in contrast to most prior work, the view pairs may exhibit relatively little overlap and need not be prealigned. To this end, a novel effective evaluation metric for registration, the Surface Interpenetration Measure (SIM) is defined. This measure quantifies the interleaving of two surfaces as their alignment is refined, putting the qualitative evaluation of "splotchiness," often used in reference to renderings of the aligned surfaces, onto a solid mathematical footing. The SIM is shown to be superior to mean squared error (i.e. more sensitive to fine scale changes) in controlling the final stages of the alignment process. The authors go on to combine the SIM with Genetic Algorithms (GAs) to develop a robust approach for range image registration. The results confirm that this technique achieves precise surface registration with no need for prealignment, as opposed to methods based on the Iterative Closest Point (ICP) algorithm, the most popular to date. Thorough experimental results including an extensive comparative study are presented and enhanced GA-based approaches to improve the registration still further are proposed. The authors also develop a global multiview registration technique using the GA-based approach. The results show considerable promise in terms of accuracy for 3D modeling.
    URI
    https://lib.hpu.edu.vn/handle/123456789/32553
    Collections
    • Technology [3206]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV