Show simple item record

dc.contributor.authorKibble, Tom W Ben_US
dc.contributor.authorBerkshire, Frank Hen_US
dc.date.accessioned2019-07-01T07:26:20Z
dc.date.available2019-07-01T07:26:20Z
dc.date.issued2006en_US
dc.identifier.isbn9781860944246en_US
dc.identifier.isbn1860944248en_US
dc.identifier.otherHPU1161390en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/33052
dc.description.abstractArtificial neural networks (ANNs), which are parallel computational models, comprising of interconnected adaptive processing units (neurons) have the capability to predict accurately the dispersive behavior of vehicular pollutants under complex environmental conditions. This book aims at describing step-by-step procedure for formulation and development of ANN based VP models considering meteorological and traffic parameters. The model predictions are compared with existing line source deterministic/statistical based models to establish the efficacy of the ANN technique in explaining frequent dispersion complexities in urban areas. The book is very useful for hardcore professionals and researchers working in problems associated with urban air pollution management and control.en_US
dc.format.extent247 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectArtificial Intelligenceen_US
dc.subjectInformation Systems Applicationsen_US
dc.subjectInformation Storage and Retrievalen_US
dc.subjectPattern Recognitionen_US
dc.titleArtificial Neural Networks in Vehicular Pollution Modellingen_US
dc.typeBooken_US
dc.size4,895 KBen_US
dc.departmentTechnologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record