• Login
    View Item 
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    •   DSpace Home
    • English resources
    • Technology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles: 4th International Workshop, Edmonton, Canada, July 23, 2002. Revised Papers

    Thumbnail
    View/Open
    Lecture-Notes-in-Computer-Science-2703-1412.pdf (3.756Mb)
    Date
    2003
    Author
    Chi, Ed H.
    Rosien, Adam
    Heer, Jeffrey
    Metadata
    Show full item record
    Abstract
    WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized ofers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and efective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.
    URI
    https://lib.hpu.edu.vn/handle/123456789/33047
    Collections
    • Technology [3137]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV