Show simple item record

dc.contributor.authorLast, Marken_US
dc.contributor.authorKandel, Abrahamen_US
dc.contributor.authorBunke, Horsten_US
dc.date.accessioned2019-04-09T03:11:51Z
dc.date.available2019-04-09T03:11:51Z
dc.date.issued2004en_US
dc.identifier.isbn9789812382900en_US
dc.identifier.isbn9812382909en_US
dc.identifier.isbn9781423723028en_US
dc.identifier.otherHPU1161260en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/32578
dc.description.abstractAdding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.en_US
dc.format.extent205 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectArtificial intelligenceen_US
dc.subjectTechnologyen_US
dc.subjectData Miningen_US
dc.titleData Mining In Time Series Databasesen_US
dc.typeBooken_US
dc.size4,056 KBen_US
dc.departmentTechnologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record