Show simple item record

dc.contributor.authorBringmann, Kathrinen_US
dc.contributor.authorRolen, Larryen_US
dc.contributor.authorZwegers, Sanderen_US
dc.date.accessioned2016-10-11T05:37:53Z
dc.date.available2016-10-11T05:37:53Z
dc.date.issued2015en_US
dc.identifier.otherHPU4160606en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/23689
dc.description.abstractIn this paper, we study modularity of several functions which naturally arose in a recent paper of Lau and Zhou on open Gromov–Witten potentials of elliptic orbifolds. They derived a number of examples of indefinite theta functions, and we provide modular completions for several such functions which involve more complicated objects than ordinary modular forms. In particular, we give new closed formulae for special indefinite theta functions of type (1, 2) in terms of products of mock modular forms. This formula is also of independent interest.en_US
dc.format.extent12 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.subjectMathematicsen_US
dc.subjectNumber theoryen_US
dc.subjectGeometryen_US
dc.subjectMathematical physicsen_US
dc.subjectModular formsen_US
dc.subjectMockmodular formsen_US
dc.subjectJacobi formsen_US
dc.subjectElliptic orbifoldsen_US
dc.subjectGromov–Witten potentialsen_US
dc.titleOn themodularity of certain functions from the Gromov–Witten theory of elliptic orbifoldsen_US
dc.typeArticleen_US
dc.size374KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record