Show simple item record

dc.contributor.authorSavage, Richard S.en_US
dc.contributor.authorYuan, Yinyinen_US
dc.date.accessioned2016-07-30T01:39:22Z
dc.date.available2016-07-30T01:39:22Z
dc.date.issued2016en_US
dc.identifier.otherHPU4160511en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22409en_US
dc.description.abstractPredicting response to treatment and disease-specific deaths are key tasks in cancer research yet there is a lack of methodologies to achieve these. Large-scale ’omics and digital pathology technologies have led to the need for effective statistical methods for data fusion to extract the most useful patterns from these diverse data types. We presentFusionGP, a method for combining heterogeneous data types designed specifically for predicting outcome of treatment and disease. FusionGP is a Gaussian process model that includes a generalization of feature selection for biomarker discovery, allowing for simultaneous, sparse feature selection across multiple data types.en_US
dc.format.extent13 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.subjectGeneticsen_US
dc.subjectEpidemiologyen_US
dc.subjectBioinformaticsen_US
dc.subjectBreast canceren_US
dc.subjectData integrationen_US
dc.subjectBayesianen_US
dc.titlePredicting chemoinsensitivity in breast cancer with omics digital pathology data fusionen_US
dc.typeArticleen_US
dc.size617KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record