Show simple item record

dc.contributor.authorBox, Simonen_US
dc.date.accessioned2016-07-18T06:49:08Z
dc.date.available2016-07-18T06:49:08Z
dc.date.issued2014en_US
dc.identifier.otherHPU4160430en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22272
dc.description.abstractOptimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human ‘player’ to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player’s strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance.en_US
dc.format.extent19 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.subjectEngineeringen_US
dc.subjectComputer modelling and simulationen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBiotechnologyen_US
dc.subjectTraffic controlen_US
dc.subjectMachine learningen_US
dc.subjectHuman problem solvingen_US
dc.titleSupervised learning from human performance at the computationally hard problemof optimal traffic signal control on a network of junctionsen_US
dc.typeArticleen_US
dc.size692KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record