The minimumnumber of rotations about two axes for constructing an arbitrarily fixed rotation
dc.contributor.author | Hamada, Mitsuru | en_US |
dc.date.accessioned | 2016-07-18T06:49:05Z | |
dc.date.available | 2016-07-18T06:49:05Z | |
dc.date.issued | 2014 | en_US |
dc.identifier.other | HPU4160416 | en_US |
dc.identifier.uri | https://lib.hpu.edu.vn/handle/123456789/22257 | |
dc.description.abstract | For any pair of three-dimensional real unit vectorsˆ mandˆ nwith |ˆ mT ˆ n|<1 and any rotationU,letNˆ m,ˆ n (U) denote the least value of a positive integerksuch thatUcan be decomposed into a product of krotations about either ˆ morˆ n. This work gives the number Nˆ m,ˆ n (U) as a function ofU. Here, a rotation means an element D of the special orthogonal group SO(3) or an element of the special unitary group SU(2) that corresponds to D. Decompositions of Uattaining the minimum number Nˆ m,ˆ n (U) are also given explicitly. | en_US |
dc.format.extent | 18 p. | en_US |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en_US |
dc.subject | Appliedmathematics | en_US |
dc.subject | Computational | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Quantum computing | en_US |
dc.subject | SU(2) | en_US |
dc.subject | SO(3) | en_US |
dc.subject | Rotation | en_US |
dc.title | The minimumnumber of rotations about two axes for constructing an arbitrarily fixed rotation | en_US |
dc.type | Article | en_US |
dc.size | 485KB | en_US |
dc.department | Education | en_US |
Files in this item
This item appears in the following Collection(s)
-
Education [806]