Show simple item record

dc.contributor.authorHamada, Mitsuruen_US
dc.date.accessioned2016-07-18T06:49:05Z
dc.date.available2016-07-18T06:49:05Z
dc.date.issued2014en_US
dc.identifier.otherHPU4160416en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22257
dc.description.abstractFor any pair of three-dimensional real unit vectorsˆ mandˆ nwith |ˆ mT ˆ n|<1 and any rotationU,letNˆ m,ˆ n (U) denote the least value of a positive integerksuch thatUcan be decomposed into a product of krotations about either ˆ morˆ n. This work gives the number Nˆ m,ˆ n (U) as a function ofU. Here, a rotation means an element D of the special orthogonal group SO(3) or an element of the special unitary group SU(2) that corresponds to D. Decompositions of Uattaining the minimum number Nˆ m,ˆ n (U) are also given explicitly.en_US
dc.format.extent18 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.subjectAppliedmathematicsen_US
dc.subjectComputationalen_US
dc.subjectMathematicsen_US
dc.subjectQuantum computingen_US
dc.subjectSU(2)en_US
dc.subjectSO(3)en_US
dc.subjectRotationen_US
dc.titleThe minimumnumber of rotations about two axes for constructing an arbitrarily fixed rotationen_US
dc.typeArticleen_US
dc.size485KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record