Show simple item record

dc.contributor.authorCharlton, Nathanielen_US
dc.date.accessioned2016-07-04T03:49:06Z
dc.date.available2016-07-04T03:49:06Z
dc.date.issued2016en_US
dc.identifier.otherHPU4160397en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/21915en_US
dc.description.abstractWe study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source SENTISTRENGTH program. Specifically we make three contributions. Firstly, we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user.en_US
dc.format.extent28 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematicsen_US
dc.subjectMathematical modellingen_US
dc.subjectComputeren_US
dc.subjectSimulationen_US
dc.subjectEvolving networksen_US
dc.subjectTwitter communitiesen_US
dc.subjectDynamics of collective emotionsen_US
dc.subjectCommunicabilityen_US
dc.titleIn the mood the dynamics of collective sentiments on Twitteren_US
dc.typeArticleen_US
dc.size1.99MBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record