An efficient interpolation technique for jump proposals in reversible jump Markov chain Monte Carlo calculations
dc.contributor.author | Farr, W. M. | en_US |
dc.contributor.author | Mandel, I. | en_US |
dc.contributor.author | Stevens, D. | en_US |
dc.date.accessioned | 2016-06-25T01:57:24Z | |
dc.date.available | 2016-06-25T01:57:24Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.other | HPU4160256 | en_US |
dc.identifier.uri | https://lib.hpu.edu.vn/handle/123456789/21760 | en_US |
dc.description.abstract | Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. | en_US |
dc.format.extent | 12 p. | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | en | en_US |
dc.publisher | The Royal Society | en_US |
dc.subject | Astronomy | en_US |
dc.subject | Astrophysics | en_US |
dc.subject | Statistics | en_US |
dc.subject | Markov chain Monte Carlo | en_US |
dc.subject | Reversible-jump | en_US |
dc.subject | Data analysis | en_US |
dc.title | An efficient interpolation technique for jump proposals in reversible jump Markov chain Monte Carlo calculations | en_US |
dc.type | Book | en_US |
dc.size | 1.62MB | en_US |
dc.department | Education | en_US |
Files in this item
This item appears in the following Collection(s)
-
Education [806]