Show simple item record

dc.contributor.authorFarr, W. M.en_US
dc.contributor.authorMandel, I.en_US
dc.contributor.authorStevens, D.en_US
dc.date.accessioned2016-06-25T01:57:24Z
dc.date.available2016-06-25T01:57:24Z
dc.date.issued2015en_US
dc.identifier.otherHPU4160256en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/21760en_US
dc.description.abstractSelection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once.en_US
dc.format.extent12 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.publisherThe Royal Societyen_US
dc.subjectAstronomyen_US
dc.subjectAstrophysicsen_US
dc.subjectStatisticsen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectReversible-jumpen_US
dc.subjectData analysisen_US
dc.titleAn efficient interpolation technique for jump proposals in reversible jump Markov chain Monte Carlo calculationsen_US
dc.typeBooken_US
dc.size1.62MBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record