Show simple item record

dc.contributor.authorXu, Dongpoen_US
dc.contributor.authorJahanchahi, Cyrusen_US
dc.contributor.authorTook, Clive C.en_US
dc.date.accessioned2016-06-25T01:57:02Z
dc.date.available2016-06-25T01:57:02Z
dc.date.issued2015en_US
dc.identifier.otherHPU4160294en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/21674en_US
dc.description.abstractQuaternion derivatives exist only for a very restricted class of analytic (regular) functions however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra.en_US
dc.format.extent24 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.publisherThe Royal Societyen_US
dc.subjectElectrical engineeringen_US
dc.subjectSystemsen_US
dc.subjectTheoryen_US
dc.subjectMathematical modellingen_US
dc.subjectGeneralized HR calculusen_US
dc.subjectNonlinear quaternionen_US
dc.titleEnabling quaternion derivativesen_US
dc.typeBooken_US
dc.size529KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record