Show simple item record

dc.contributor.authorLafferriere, Beatrizen_US
dc.contributor.authorLafferriere, Gerardoen_US
dc.contributor.authorNguyen, Mau Namen_US
dc.date.accessioned2016-06-25T01:55:29Z
dc.date.available2016-06-25T01:55:29Z
dc.date.issued2015en_US
dc.identifier.isbn978-1-3127428-4-0en_US
dc.identifier.otherHPU3160322en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/21629
dc.description.abstractChapter 1: Tools for Analysis. 1.1 Basic Concepts of Set Theory. 1.2 Functions. 1.3 The Natural Numbers and Mathematical Induction. 1.4 Order Field Axioms. 1.5 The Completeness Axiom for the Real Numbers. 1.6 Applications of the Completeness Axiom. Chapter 2: Sequences. 2.1 Convergence. 2.2 Limit Theorems. 2.3 Monotone Sequences. 2.4 The Bolzano-Weierstrass Theorem. 2.5 Limit Superior and Limit Inferior. 2.6 Open Sets, Closed Sets, and Limit Points. Chapter 3: Limits and Continuity. 3.1 Limits of Functions. 3.2 Limit Theorems. 3.3 Continuity. 3.4 Properties of Continuous Functions. 3.5 Uniform Continuity. 3.6 Lower Semicontinuity and Upper Semicontinuity. Chapter 4: Differentiation. 4.1 Definition and Basic Properties of the Derivative. 4.2 The Mean Value of Theorem. 4.3 Some Applications of the Mean Value Theorem. 4.4 L’Hospital’s Rule. 4.5 Taylor’s Theorem. 4.6 Convex Functions and Derivatives. 4.7 Nondifferentiable Convex Functions and Subdifferentials. Chapter 5: Solutions and Hints for Selected Exercises.en_US
dc.format.extent141 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherPortland State Universityen_US
dc.subjectMathematicsen_US
dc.subjectStatisticsen_US
dc.subjectAnalysisen_US
dc.titleIntroduction to Mathematical Analysisen_US
dc.typeBooken_US
dc.size1,363KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record