Show simple item record

dc.contributor.authorShoup, Victoren_US
dc.date.accessioned2016-06-25T01:55:22Z
dc.date.available2016-06-25T01:55:22Z
dc.date.issued2008en_US
dc.identifier.otherHPU3160304en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/21609
dc.description.abstractChapter 1: Basic properties of the integers. Chapter 2: Congruences. Chapter 3: Computing with large integers. Chapter 4: Euclid’s algorithm. Chapter 5: The distribution of primes. Chapter 6: Abelian groups. Chapter 7: Rings. Chapter 8: Finite and discrete probability distributions. Chapter 9: Probabilistic algorithms. Chapter 10: Probabilistic primality testing. Chapter 11: Finding generators and discrete logarithms in Z∗p. Chapter 12: Quadratic reciprocity and computing modular square roots. Chapter 13: Modules and vector spaces. Chapter 14: Matrices. Chapter 15: Subexponential-time discrete logarithms and factoring. Chapter 16: More rings. Chapter 17: Polynomial arithmetic and applications. Chapter 18: Finite Fields. Chapter 19: Linearly generated sequences and applications. Chapter 20: Algorithms for finite fields. Chapter 21: Deterministic primality testing.en_US
dc.format.extent598 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectMathematicsen_US
dc.subjectStatisticsen_US
dc.subjectComputationalen_US
dc.titleA Computational Introduction to Number Theory and Algebraen_US
dc.typeBooken_US
dc.size3,563KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record