Please use this identifier to cite or link to this item: https://lib.hpu.edu.vn/handle/123456789/34473
Full metadata record
DC FieldValueLanguage
dc.contributor.authorĐào, Thị Kiênen_US
dc.contributor.authorWang, Hong Jiangen_US
dc.contributor.authorYu, Jieen_US
dc.contributor.authorNguyễn, Hữu Quỳnhen_US
dc.contributor.authorNgô, Trường Giangen_US
dc.contributor.authorNguyễn, Trọng Thểen_US
dc.date.accessioned2021-11-26T02:42:21Z
dc.date.available2021-11-26T02:42:21Z
dc.date.issued2021en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/34473
dc.description.abstractThis paper suggests a solution for the image segmentation(IS) problem with the multilevel thresholding based on one of the latest hybrid swarm computation optimization algorithms, particle swarms, and gravitational search (PSGA). The experimental results are comparable with other state-of-the-art algorithms that show that the PSGA on selected images is better than the competitors.en_US
dc.format.extent10 tr.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectCross-entropy thresholdingen_US
dc.subjectImage segmentationen_US
dc.subjectParticle warmsen_US
dc.titleAn Optimizing Multilevel Thresholding for Image Segmentation Based on Hybrid Swarm Computation Optimizationen_US
dc.typeArticleen_US
dc.departmentBài báo khoa họcen_US
Appears in Collections:Bài báo khoa học



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.