Please use this identifier to cite or link to this item: http://lib.hpu.edu.vn/handle/123456789/33694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSkansi, Sandroen_US
dc.date.accessioned2020-08-05T07:12:41Z-
dc.date.available2020-08-05T07:12:41Z-
dc.date.issued2018en_US
dc.identifier.isbn978-3-319-73003-5en_US
dc.identifier.isbn978-3-319-73004-2en_US
dc.identifier.otherHPU2164645en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/33694-
dc.description.abstractThis textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.en_US
dc.format.extent196p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectDeep learningen_US
dc.subjectNeural networksen_US
dc.subjectNatural language processingen_US
dc.subjectArtificial Intelligenceen_US
dc.titleIntroduction to Deep Learning: From Logical Calculus to Artificial Intelligenceen_US
dc.typeBooken_US
dc.size2,45 MBen_US
dc.departmentTechnologyen_US
Appears in Collections:Technology

Files in This Item:
File Description SizeFormat 
Introduction-To-Deep-Learning.pdf
  Restricted Access
2.52 MBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.