Please use this identifier to cite or link to this item: https://lib.hpu.edu.vn/handle/123456789/33052
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKibble, Tom W Ben_US
dc.contributor.authorBerkshire, Frank Hen_US
dc.date.accessioned2019-07-01T07:26:20Z-
dc.date.available2019-07-01T07:26:20Z-
dc.date.issued2006en_US
dc.identifier.isbn9781860944246en_US
dc.identifier.isbn1860944248en_US
dc.identifier.otherHPU1161390en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/33052-
dc.description.abstractArtificial neural networks (ANNs), which are parallel computational models, comprising of interconnected adaptive processing units (neurons) have the capability to predict accurately the dispersive behavior of vehicular pollutants under complex environmental conditions. This book aims at describing step-by-step procedure for formulation and development of ANN based VP models considering meteorological and traffic parameters. The model predictions are compared with existing line source deterministic/statistical based models to establish the efficacy of the ANN technique in explaining frequent dispersion complexities in urban areas. The book is very useful for hardcore professionals and researchers working in problems associated with urban air pollution management and control.en_US
dc.format.extent247 p.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectArtificial Intelligenceen_US
dc.subjectInformation Systems Applicationsen_US
dc.subjectInformation Storage and Retrievalen_US
dc.subjectPattern Recognitionen_US
dc.titleArtificial Neural Networks in Vehicular Pollution Modellingen_US
dc.typeBooken_US
dc.size4,895 KBen_US
dc.departmentTechnologyen_US
Appears in Collections:Technology

Files in This Item:
File Description SizeFormat 
Artificial-Neural-Networks-in-Vehicular-Pollution-Modelling-1417.pdf
  Restricted Access
4.89 MBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.