Please use this identifier to cite or link to this item: http://lib.hpu.edu.vn/handle/123456789/23582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, Ri-Qien_US
dc.date.accessioned2016-10-11T05:37:23Z
dc.date.available2016-10-11T05:37:23Z
dc.date.issued2016en_US
dc.identifier.otherHPU4160690en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/23582en_US
dc.description.abstractGiven a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays.en_US
dc.format.extent14 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.subjectPhysicsen_US
dc.subjectMathematical modellingen_US
dc.subjectTime-series analysisen_US
dc.subjectNetwork reconstructionen_US
dc.subjectGeospatial networken_US
dc.subjectCompressive sensingen_US
dc.titleData based reconstruction of complex geospatial networks, nodal positioning and detection of hidden nodesen_US
dc.typeArticleen_US
dc.size1.20MBen_US
dc.departmentEducationen_US
Appears in Collections:Education

Files in This Item:
File Description SizeFormat 
0573_Databasedreconstruction.pdf
  Restricted Access
1.24 MBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.