Please use this identifier to cite or link to this item: http://lib.hpu.edu.vn/handle/123456789/22709
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBotte-Lecocq, C.en_US
dc.contributor.authorHammouche, K.en_US
dc.contributor.authorMoussa, A.en_US
dc.date.accessioned2016-08-02T08:13:33Z
dc.date.available2016-08-02T08:13:33Z
dc.date.issued2007en_US
dc.identifier.isbn978-3-902613-06-6en_US
dc.identifier.otherHPU3160481en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22709-
dc.description.abstractAll the clustering methods presented in this chapter tend to generalize bi-dimensional procedures initially developed for image processing purpose. Among them, thresholding, edge detection, probabilistic relaxation, mathematical morphology, texture analysis, and Markov field models appear to be valuable tools with a wide range of applications in the field of unsupervised pattern classification. Following the same idea of adapting image processing techniques to cluster analysis, one of our other objectives is to model spatial relationships between pixels by means of other textural parameters derived from autoregressive models (Comer & Delp, 1999), Markov random fields models (Cross & Jain, 1983), Gabor filters (Jain & Farrokhnia, 1991), wavelet coefficients (Porter & Canagarajah, 1996) and fractal geometry (Keller & Crownover, 1989)en_US
dc.format.extent23 p.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.publisherINTECH Open Access Publisheren_US
dc.subjectScene Reconstruction Pose Estimation and Trackingen_US
dc.titleImage Processing Techniques for Unsupervised Pattern Classificationen_US
dc.typeBooken_US
dc.size446KBen_US
dc.departmentEducationen_US
Appears in Collections:Education

Files in This Item:
File Description SizeFormat 
16_ImageProcessingTechniquesforUnsupervisedPatternClassification.pdf
  Restricted Access
445.29 kBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.