Please use this identifier to cite or link to this item: https://lib.hpu.edu.vn/handle/123456789/22421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeckett, Stephen J.en_US
dc.date.accessioned2016-07-30T01:39:24Z
dc.date.available2016-07-30T01:39:24Z
dc.date.issued2016en_US
dc.identifier.otherHPU4160522en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22421en_US
dc.description.abstractReal world complex networks are composed of non random quantitative interactions. Identifying communities of nodes that tend to interact more with each other than the network as a whole is a key research focus across multiple disciplines, yet many community detection algorithms only use information about the presence or absence of interactions between nodes. Weighted modularity is a potential method for evaluating the quality of community partitions in quantitative networks.en_US
dc.format.extent18 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.subjectBiologyen_US
dc.subjectGraph theoryen_US
dc.subjectComputational biologyen_US
dc.subjectEcologyen_US
dc.subjectModular structureen_US
dc.subjectNetwork ecologyen_US
dc.subjectBipartite networksen_US
dc.subjectModulesen_US
dc.titleImproved community detection inweighted bipartite networksen_US
dc.typeArticleen_US
dc.size736KBen_US
dc.departmentEducationen_US
Appears in Collections:Education

Files in This Item:
File Description SizeFormat 
0405_Improvedcommunitydetectioninweightedbipartitenetworks.pdf
  Restricted Access
736.05 kBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.