Please use this identifier to cite or link to this item: https://lib.hpu.edu.vn/handle/123456789/22376
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoughton, Conoren_US
dc.date.accessioned2016-07-30T01:24:41Z
dc.date.available2016-07-30T01:24:41Z
dc.date.issued2015en_US
dc.identifier.otherHPU4160481en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22376-
dc.description.abstractMany important data types, such as the spike trains recorded from neurons in typical electrophysiological experiments, have a natural notion of distance or similarity between data points, even though there is no obvious coordinate system. Here, a simple Kozachenko–Leonenko estimator is derived for calculating the mutual information between datasets of this type.en_US
dc.format.extent6 p.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.subjectMathematicsen_US
dc.subjectAppliedmathematicsen_US
dc.subjectNeuroscienceen_US
dc.subjectComputational biologyen_US
dc.subjectSpike trainsen_US
dc.subjectInformation theoryen_US
dc.subjectMutual informationen_US
dc.titleCalculating mutual information for spike trains and other data with distances but no coordinatesen_US
dc.typeArticleen_US
dc.size325KBen_US
dc.departmentEducationen_US
Appears in Collections:Education

Files in This Item:
File Description SizeFormat 
0364_Calculatingmutualinformation.pdf
  Restricted Access
325.46 kBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.