Please use this identifier to cite or link to this item: https://lib.hpu.edu.vn/handle/123456789/22293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMora, Antonioen_US
dc.contributor.authorSicari, Rosaen_US
dc.contributor.authorCortigiani, Lauroen_US
dc.date.accessioned2016-07-18T06:49:11Z
dc.date.available2016-07-18T06:49:11Z
dc.date.issued2015en_US
dc.identifier.otherHPU4160449en_US
dc.identifier.urihttps://lib.hpu.edu.vn/handle/123456789/22293-
dc.description.abstractPredictive assessment of the risk of developing cardiovascular diseases is usually provided by computational approaches centred on Cox models. The complex interdependence structure underlying clinical data patterns can limit the performance of Cox analysis and complicate the interpretation of results, thus calling for complementary and integrative methods. Prognostic models are proposed for studying the risk associated with patients with known or suspected coronary artery disease (CAD) undergoing vasodilator stress echocardiography, an established technique for CAD detection and prognostication.en_US
dc.format.extent13 p.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.subjectBiologyen_US
dc.subjectBiocomplexityen_US
dc.subjectBiomathematicsen_US
dc.subjectMedical physicsen_US
dc.subjectCoronary artery diseaseen_US
dc.subjectCoxmodelsen_US
dc.subjectMutual information networken_US
dc.titlePrognostic models in coronary artery diseaseen_US
dc.typeArticleen_US
dc.size1.19MBen_US
dc.departmentEducationen_US
Appears in Collections:Education

Files in This Item:
File Description SizeFormat 
0332_Prognosticmodels.pdf
  Restricted Access
1.22 MBAdobe PDFThumbnail
View/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.