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Abstract. Peak load distribution optimization (PLD) is a typical multi-con-

strained nonlinear optimization problem considered an essential vital part of the 

power system to achieve energy-saving and consumption reduction. This study 

introduces an enhanced version of the moth flame optimization algorithm 

(EMFO) for the PLD problem. The actual operation constraints of the power sys-

tem of the PLD are modeled for the objective function of optimization. In the 

experimental section, the IEEE-bus benchmark system is used as the case study 

to test the performance of the proposed scheme. The results show that the pro-

posed scheme can solve the power system PLD problem with feasibility and sig-

nificant economic benefits. 

Keywords: Peak load distribution optimization; Regulation load distribution 

power; Peak shaving cost； Enhanced moth flame algorithm. 

1 Introduction 

Peak load distribution optimization (PLD) is one of the essential load dispatch problems 

to allocate power generations system optimally [1]. A power generation system in-

cludes multiple power generation units to achieve minimum power generation cost un-

der the system constraints [2]. The optimization problem is to find a decision that makes 

one or more relationship indicators reach the maximum (or minimum) under the re-

striction of a series of objective or subjective conditions [3]. Increasing the clean energy 

installed capacity share is an unavoidable prerequisite for the power system's healthy 

and long-term development [4]. Thermal power, however, continues to account for a 

significant component of the country's power supply structure due to its long history of 

evolution [5].  As the penetration rate of clean energy in the grid rises, the area available 

for thermal power generation will inevitably shrink, and thermal power units will grad-

ually transition to a peak-shaving role [6]. 
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The power generation cost has attracted much attention from scholars as a review of 

the literature. Current research works primarily focus on calculating the economic ben-

efits of thermal power peak shaving [7]. The goal function of maximizing clean energy 

consumption, development of peak shaving auxiliary markets, power peaking load dis-

tribution, and power peaking load distribution are complex nonlinear problems [8]. 

The traditional optimization methods, e.g., linear programming, gradian climbed hill-

ing,  square optimum, would be faced the computation complex times when dealing 

with the complicated problem like the nonlinear PLD [9]. The metaheuristic algorithms 

[10], e.g., genetic algorithms (GA) [11], swarm algorithms (PSO)[12], evolution algo-

rithms (DE), improved bat algorithms (IBA) [3][13] effectively solve the typical PLD 

problems.  

The moth flame optimizer (FMO) [14] is a newly proposed metaheuristic algorithm 

inspired by the moth behavior in flying spiral trajectory for lighting flame. Still, it has 

disadvantages, such as optimal local solution, slow convergence rate, etc., making the 

problem's solution unsatisfactory. Optimizing large-scale power systems such as the 

PLD is still falling into the local optimum if the algorithm lacks diversity agents.  

This study proposes an enhanced version for the moth flame optimization algorithm 

(EMFO) based on chaotic sequence and quadratic interpolation to improve its diversity 

agent. It means the algorithm's exploration and development capabilities could be ef-

fectively balanced and enhanced—the algorithm's convergence speed. As the analysis 

statement, a solution to the peak-load cost estimation of power load distribution is mod-

eled to minimize the cost based on a novel EFMO. The suggested resolution is imple-

mented to provide a particular reference for the optimized operation of thermal power 

under a high-proportion clean energy grid.  

2 Peak Load Distribution Model  

The receiving-end power grid unit acts as a peak-shaving unit, compressing its own 

power generation space to guarantee clean energy consumption [6]. The peak shaving 

process compared with the original power generation plan [15]. This part of the on-grid 

electricity revenue loss is the unit opportunity cost. For peak shaving thermal power 

unit i-th, its opportunity cost calculates as the following formula. 

𝑅𝑖 = ∑ (𝑃𝑖,𝑡
𝑠𝑐 − 𝑃𝑖,𝑡

𝑎𝑐) × ∆𝑡 × 𝜌𝐵𝐺𝑇
𝑡=1                                         (1) 

In the formula R is the opportunity cost of thermal power unit i; T is the scheduling 

period; 𝑃𝑖,𝑡
𝑠𝑐  is the planned power generation; 𝑃𝑖,𝑡

𝑎𝑐  is the power generation after peak 

shaving; Δt is the generation time of thermal power during this period; 𝜌𝐵𝐺  is the on-

grid price of thermal power. The output reduction of peak-shaving thermal power units 

has lost part of the on-grid power. Due to the power output status change, the production 

cost of power generation has also changed correspondingly.  The second-order function 

is modeled as follows.  

𝐶𝑔𝑖 = 𝑎𝑃2 + 𝑏𝑃 + 𝑐                                                     (2) 

Where 𝐶𝑔𝑖 is the power generation cost of the production power unit I; P is the unit's 

output, and a, b, and c are the unit coefficients. The change in the production cost of 

peak-shaving thermal power plants can be expressed as follows.. 



∆𝐶𝑖,𝑡 = 𝐶𝑔𝑖 × 𝑃𝑖,𝑡
𝑠𝑐 − 𝐶𝑔𝑖 × 𝑃𝑖,𝑡

𝑎𝑐                                            (3)  

In formula, ∆𝐶𝑖,𝑡 is the change in power generation cost during t. When it is a positive 

number, it indicates that the cost of power generation has decreased, otherwise, it sug-

gests that the cost of power generation has increased; 𝐶𝑔𝑖 × 𝑃𝑖,𝑡
𝑠𝑐  is the planned power 

generation cost, and 𝐶𝑔𝑖 × 𝑃𝑖,𝑡
𝑎𝑐  is the actual power generation cost. Based on the above 

processing, the total cost of peak shaving of thermal power units is shown in the fol-

lowing formula. 

𝑅𝑎𝑐,𝑖 = 𝑅𝑖 − ∑ ∆𝐶𝑖,𝑡
𝑇
𝑡=1                                                 (4) 

In the formula, 𝑅𝑎𝑐,𝑖  is the total cost of peak shaving of the thermal power unit. A model 

of minimizing peaking cost as the objective function of the power peaking load distri-

bution will be presented in Section 4. 

3 Enhanced Moth Flame Optimization  

The moth flame optimization algorithm (MFO) [14] is a new metaheuristic algorithm 

that has advantages as understand and implement quickly and few parameters. Still, it 

has disadvantages, e.g., fulling local optimum and slow convergence when dealing with 

a complex problem. The enhanced moth flame optimization (EMFO) algorithm is pro-

posed in this section using chaotic initialization and Gaussian mutation to improve the 

algorithm's ability to jump out of the local optimum. The brief presentation is listed as 

follows. First, the moth population is initialized using cubic chaotic mapping to make 

the moths more evenly distributed in the search space. Second, Gaussian mutation is 

used to perturb a small number of poor individuals population. Third, the Archimedes 

curve is used to broaden the search range and improve the ability to explore the previ-

ously unexplored territory. 

3.1 Moth Flame Optimization 

Let 𝑀𝑜 be a matrix of the spatial position of the moth in the MFO algorithm [14] with 

n is a moth population size and d is a dimension of the space search problem. The 

position matrix in space is similar to the space matrix of moths, represented as follows. 

𝑀𝑜(𝑛, 𝑑) = [

𝑚𝑜11 𝑚𝑜12 … 𝑚𝑜1𝑑
𝑚𝑜21

⋮
𝑚𝑜𝑛1

𝑚𝑜22

⋮
𝑚𝑜𝑛2

…
⋮
…

𝑚𝑜2𝑑

⋮
𝑚𝑜𝑛𝑑

]                                         (5)  

Let 𝑂𝑀𝑜 be the objective function value as of other moths' individual space stored by 

the matrix Mo as follows. 

𝑂𝑀𝑜 = [𝑜𝑚𝑜1, 𝑜𝑚𝑜2, … , 𝑜𝑚𝑜𝑛]𝑇                                               (6) 

Let Fr be the flame core of the algorithm with their objective function values as follows. 

𝐹𝑟(𝑛, 𝑑) = [

𝑓𝑟11 𝑓𝑟12 … 𝑓𝑟1𝑑

𝑓𝑟21

⋮
𝑓𝑟𝑛1

𝑓𝑟22

⋮
𝑓𝑟𝑛2

…
⋮

…

𝑓𝑟2𝑑

⋮
𝑓𝑟𝑛𝑑

]                                                (7) 

The objective function value is calculated for the flame's position as follows.   



𝑂𝐹𝑟 = [𝑜𝑓𝑟1     𝑜𝑓𝑟2     …   𝑜𝑓𝑟𝑛]𝑇                                         (8) 

The flame reduction principle process is implemented as given in the following for-

mula. 

𝑓𝑙𝑎𝑚𝑒𝑟 = 𝑅𝑜𝑢𝑛𝑑(𝑁 − 𝑡 ×
𝑁−1

𝑇
)                                     (9) 

Where 𝑖 and 𝑇 are the current number of iterations and the maximum number of itera-

tions, respectively; 𝑁 is the maximum number of flames. 

𝐷𝑖 = |𝐹𝑟𝑗 − 𝑀𝑜𝑖|                                               (10) 

where 𝐷𝑖  is the distance of the flame to moth that are flying moth move towards the 

flame position.  The movement path is given as a logarithmic spiral curve, and the curve 

is taken as the primary update mechanism of the moth. The logarithmic spiral curve of 

the algorithm is defined as follows. 

𝑆(𝑀𝑜𝑖 , 𝐹𝑟𝑗) = 𝐷𝑖𝑒𝑏𝑡cos (2𝜋𝑡) + 𝐹𝑟𝑗                                  (11) 

Where 𝑆(𝑀𝑜𝑖 , 𝐹𝑜𝑗) is the updated position of the moth; D is the distance between the 

i-th moth and the j-th flame; is a constant related to the shape of the spiral; b is a random 

number, the value interval is [-1,1]; 𝑒𝑏𝑡 ∙ cos (2𝜋𝑡) is the right a number spiral curve 

expression. 

3.2 An Enhancement of FMO 

Gaussian mutation mechanism is used to determine the flame space position, leading 

to the effective utilization of the current global optimal moth. With the updated formu-

las of the solution in the algorithm, the space vector position of each moth is directly 

related to the position of the closest flame space. The selected individual's worst fitness 

value is applied to mutate to the moth population scale; it represents the variance con-

venient for controlling and narrowing the update range and appropriately increasing the 

population diversity of the algorithm. The improved moth generation formula is de-

scribed as follows.  

𝛾𝑖 = 4𝛾𝑖−1𝑛3 − 3𝛾𝑖−1𝑛                                                (12) 

where  𝛾𝑖 is a random generator as cubic chaotic; −1 ≤ 𝛾 ≤ 1,    𝑛 = 0,1, … , 𝑁. The 

initializing the moth population using a cubic chaotic map is the map to the solution 

space as the following formula. 

𝑥𝑖𝑑 = 𝐿𝑑 + (1 + 𝛾𝑖𝑑) ×
𝑈𝑑−𝐿𝑑

2
                                         (13) 

where U and L are the upper and lower bound of the search space; d is the dimensional 

coordinate of the generated i-th moth.  

𝑀𝑛𝑒𝑤
𝑡 = 𝑀𝑗

∗𝑡 + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎2)                                           (14) 

where 𝐺𝑎𝑢𝑠𝑠𝑖𝑜𝑛(𝜇, 𝜎2) is generation of the population; 𝑛 is the moth population size; 

𝜎 is the proportion of variation; 𝜇 is the mean value; According to experience of the 

variance, the value of 𝜎 is set to 1/6 in the algorithm. 



4 The EFMO for Load Distribution Optimization 

The optimization problem of the PLD is modeled as its objective function with the total 

amount of incoming electricity from the receiving end power system grid. It is deter-

mined by the total amount of incoming electricity or additional local clean energy issu-

ance at each period. The peak load share based on the peaking cost of each power unit 

is bear over time, minimizing the thermal power peaking load distribution [15]. 

𝑜𝑏𝑗 = min (∑ 𝑅𝑎𝑐,𝑖
𝑁
𝑖=1 )                                     (15) 

where 𝑜𝑏𝑗 is the objective function;  N is the total number of peak-shaving thermal 

power units, and other parameters are the same as above. Subjective to the objective 

function is dealing with its constraints.  

Power balance constraint is given as follows. 

∑ ∆𝑃𝑖,𝑡 = ∆𝑃𝑡    (𝑡 = 1,2, … , 𝑇)𝑁
𝑖=1                                   (16) 

In the formula: ∆𝑃𝑖,𝑡 is the peak-shaving load allocated to the i-th thermal power unit at 

time t; ∆𝑃𝑡 is the total peak-shaving demand of the power grid at time t. 

The active output of the power units constraint is expressed as follows. 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥                                          (17) 

where 𝑃𝑖,𝑚𝑖𝑛 and 𝑃𝑖,𝑚𝑎𝑥  are the minimum and maximum technical output of the thermal 

power unit, respectively. Generating units climbing ability constraints are presented as 

follows. 

{
𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≤ 𝐴𝑢,𝑖

𝑃𝑖,𝑡−1 − 𝑃𝑖,𝑡 ≤ 𝐴𝑑,𝑖
     (𝑖 = 1,2, … , 𝑁)                            (18) 

where 𝐴𝑢,𝑖  and 𝐴𝑑,𝑖  are the maximum climbing ability and the maximum downward 

climbing ability of the thermal power unit, respectively. 

The minimum startup and shutdown constraints of the unit is expressed as below. 

{
(𝑌𝑖,𝑡−1

𝑜𝑛 − 𝑈𝑖,𝑚𝑖𝑛
𝑜𝑛 )(𝑠𝑖,𝑡−1 − 𝑠𝑖,𝑡) ≥ 0

(𝑌𝑖,𝑡−1
𝑜𝑓𝑓

− 𝑈𝑖,𝑚𝑖𝑛
𝑜𝑓𝑓

)(𝑠𝑖,𝑡 − 𝑠𝑖,𝑡−1) ≥ 0
                                    (19) 

where 𝑌𝑖,𝑡−1
𝑜𝑛  and 𝑌𝑖,𝑡−1

𝑜𝑓𝑓
 are respectively when the thermal power unit i actually starts 

and stops time; 𝑈𝑖,𝑚𝑖𝑛
𝑜𝑛  and 𝑈𝑖,𝑚𝑖𝑛

𝑜𝑓𝑓
 are the minimum start and stop time of thermal power 

unit i; 𝑠𝑖,𝑡  are the state variables of thermal power unit, 1 means running, 0 means stop. 

Algorithm 1 shows a pseudo-code of the EFMO for the PLD as the steps of the process 

optimization. 

Algorithm 1. EFMO's pseudo-code for the PLD 

1: Initialization parameters: population size N, dimension  D, maximum number of 

iterations MaxT; 

2: Mapping modeling optimization space to moth solutions; Randomly initialize  

    the moth position 𝑀𝑜 in the search space; 

3: while (l <= MaxT) 

4:   Calculate the objective function value OMo of each moth, Eqs.(5),(6); 

5:   Calculate the number of flames, Eqs(7),(8) 



6:  If the current iteration number 𝑙 = 1, update the flame population according to 

𝑂𝐹𝑟 =  𝑠𝑜𝑟𝑡 (𝑂𝑀𝑜), 𝐹𝑟 =  𝑠𝑜𝑟𝑡 (𝑀𝑜); 
7:   Otherwise, update the flame population according to 𝑂𝐹𝑟 =  𝑠𝑜𝑟𝑡 (𝑂𝑀𝑜𝑙 −
1, 𝑂𝑀𝑙), 𝐹𝑟 =  𝑠𝑜𝑟𝑡(𝑀𝑙 − 1, 𝑀𝑙); 
8:  Record the first flame as the best individual; 

9:  for 𝑖 =  1 to N do 

10:       Update the position of the moth; 

11:    Determine whether the individual position of the moth exceeds the upper  

           and lower limits of the search space; 

12:       If it exceeds the boundary, re-initialize the position in the search space; 

13: end for 

14: end while 

15: Output the optimal solution. 

Fig. 1 displays the solution process as a flowchart of the gusseted EFMO for the OLD 

problem. 

 

Fig. 1. A flowchart of the gusseted EFMO for the PLD problem 

Table 1. Power generation cost coefficient parameters of the thermal power unit for peak load 

regulation 

Plants installed capac-

ity/MW 

Power generation cost factors 

a b c 

135 0.024 1 236.3 17 066 

150 0.024 0 236.02 18 082 

300 0.022 4 233 27 405 

350 0.022 0 232.3 31 621 



360 0.021 9 232.11 32 298 

467 0.020 8 230.12 39 541 

600 0.019 1 228 50 000 

660 0.018 9 226.53 52 606 

1000 0.015 0 220 75 000 

5 Experimental Results 

The selection standard is adopted the load power in typical calculation daily. All power 

plants in the power grid are turned on, and the load rate is relatively high: Table 1 

displays the power generation cost and coefficient parameters of a power grid system. 

The amount of renewable energy generation that the power grid can absorb is directly 

proportional to the power system's peak shaving capacity.  

The peak-shaving demand curve is set to ensure the electricity grid's safe and steady 

operation. An IEEE benchmark power grid system [16] with fifteen plants is used to 

test the performance of the EFMO in order to verify its dependability and effectiveness. 

The unit test system also considers slow-changing rate, ascending, and output upper 

and lower limitations, and total load demand. The suggested EFMO's results are com-

pared to the MFO [14], PSO[12], and IBA[3]. The number of search agents is uniformly 

set to 30 in all algorithms during the simulation, and the maximum number of iterations 

is 1000. 

 

Fig. 2. A obtained peak-shaving load distribution curve from the EFMO 

Figure 2a illustrates the visual graph of the introduced scheme for the peak-shaving 

load distribution of a power grid system.  



 

Fig. 3. Comparison of the suggested scheme with the other algorithms,e.g., the FMO[14], 

PSO[12], and IBA[3] algorithms for the LPD problem in terms of convergence curve 

Fig. 3 shows the comparison of the suggested method with the other algorithms,e.g., 

the FMO[14], PSO[12], and IBA[3] algorithms for the LPD problem. It can be seen 

that the EFMO produces the convergence fastest and increases the quality of perfor-

mance for the optimization problem. 

Table 2. Comparison of obtained results of the suggested EFMO with the FMO, PSO, and IBA 

algorithms for the grid system of fifteen plant units. 

Plant Units EFMO FMO PSO IBA 

𝑃1 297.42 268.17 312.07 250.63 

𝑃2 289.78 318.50 288.14 263.40 

𝑃3 77.27 91.00 89.61 81.34 

𝑃4 91.00 14.00 85.32 48.37 

𝑃5 254.81 181.32 174.03 307.02 

𝑃6 234.81 322.00 214.02 234.94 

𝑃7 236.67 325.50 141.63 263.88 

𝑃8 119.70 42.00 154.56 100.87 

𝑃9 86.01 103.61 106.72 51.64 

𝑃10 62.89 30.08 108.21 99.42 

𝑃11 37.58 51.77 50.72 42.99 

𝑃12 18.33 31.76 36.51 32.59 

𝑃13 21.98 17.50 51.99 45.90 

𝑃14 20.45 25.90 28.74 25.45 

𝑃15 20.78 37.09 31.16 20.76 

Total power output 

(MW.) 
1869.48 1860.20 1873.44 1869.19 

Total generation cost 

($/h.) 
23500.37 23645.18 23712.08 23697.81 



Power loss (MW.) 27.10 27.60 32.46 28.21 

Deviation 0.02 0.03 0.02 0.02 

Total CPU times (sec.) 0.33 0.32 0.85 1.14 

 

Table 2 depicts a comparison of obtained results of the suggested FMO with the FMO, 

PSO, and IBA algorithms for the grid system of fifteen plant units. The compared re-

sults show that the total cost of system peak shaving of the EFMO is better than the 

FMO, PSO, and IBA. It means that the proposed EFMO has a more vital ability to avoid 

local optimal solutions. The EFMO can provide a specific reference for optimizing the 

power operation under the background of high clean energy penetration and calculating 

the power peak-shaving compensation costs. 

6 Conclusion 

This paper proposed an enhanced moth flame optimization algorithm (EMFO) to avoid 

the original one's falling local optimum for the peak load distribution (PLD) problem. 

Based on the peak load cost theory, the objective function is constructed for the power 

peak load distribution model. The actual operation constraints of the PLD power system 

are dealing with using the penalty function in optimization. In the experimental section, 

the case study of the selected IEEE-bus benchmark system is used to test the perfor-

mance of the proposed EFMO system. The suggested scheme results are compared with 

the previous schemes in the literature show that the proposed EFMO can solve the 

power system PLD problem with significant economic benefits. In future work, we will 

extend implementation with a complicated benchmark CEC 2019 function test suite to 

prove the proposed EFS performance and compare the results with various swarm al-

gorithms. 
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