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Abstract. Power generating distribution planning (PDP) is a critical compo-

nent of the power system's financial performance. An effective PDP model has 

been constructed by carefully considering various system operation restrictions 

typical of multi-constrained nonlinear optimization problems. This work sug-

gests solving the PDP model based on a new swarm-based technique called 

moth flame optimization (MFO) to achieve energy-saving and cost consump-

tion reduction. In the experimental section, the IEEE-bus benchmark test sys-

tems are used to verify the performance of the proposed scheme system. The re-

sults show that the proposed scheme can solve the power system PLP problem 

with good robustness and significant economic benefits. 

Keywords: Power distribution planning; Economic dispatch; Swarm moth 

flame optimization; Optimization algorithm 

1 Introduction 

Power generating distribution planning (PDP) is a critical component of the power 

system's financial performance [1]. Because PDP  determines each unit's output in a 

given time under the given load demand [2], in the power system, each generating 

unit can share the load demand to meet the actual constraints and seek to minimize the 

total operation cost of the whole system [3]. The PDP is considered a fundamental 

problem in the operation of modern power systems and plays an essential role in im-

proving the operation economy of power systems [4]. The economic dispatch model 

of a power system has only the constraints of unit capacity limitations and power 

balance but also considers many practical nonlinear conditions existing in the power 

system operation process, e.g., the unit forbidden area, valve point effect, and climb-

ing rate limit [5]. Therefore, the power system's PDP problem is essentially a non-

smooth, highly nonlinear multi constraint optimization problem [6]. The traditional 

classical mathematical algorithm, e.g., Lagrange relaxation method, linear program-

ming (LP) for the complex problem, would have faced challenging time complicated 

for the computation. The development of swarm computing methods is one of the 

mailto:chieudv@gmail.com
mailto:jvnthe@gmail.com


most effective ways [7][8] can deal with the complex issues of nonlinear like the PDP 

problem [9][10]. 

Moth flame optimization (MFO) is a new swarm intelligence algorithm in recent 

years [11]. Its idea comes from the simulation of the lateral flight mechanism behind 

the moth's behavior. MFO algorithm has advantages such as model simple and easy to 

implement. The FMO has been widely used in the engineering field, e.g., analysis of 

pumping test data, which provides an effective method for accurately estimating con-

fined aquifer parameters, optimizing the Muskingum model's parameters with higher 

simulation accuracy, etc [12]. 

This paper introduces solving the PDP model of the power system with the MFO 

algorithm to overcome the premature and local convergence problems and to improve 

the global optimization ability. In addition, we also suggest a method combining the 

balancing unit with the penalty function to deal with power balance equality con-

straint and unbalanced power allocation problem to improve the algorithm's conver-

gence speed and calculation accuracy. 

2 Power Generating Distribution Planning Model  

As a nonlinear optimization problem of the PDP model [5], we considered it multiple 

constraints under the premise of ensuring the safe and stable operation of the system. 

The output of the unit of system operation is determined by the decision to meet the 

output plan and minimize the generation cost of the system. Two components in mod-

eling for a system power system are objective function and dealing with its constraints 

detailed as follows. 

Objective function 

The unit operation cost would determine the economic distribution of load among 

operating units is generally expressed as a function of unit output. If the fuel cost 

function of the power system is regarded as the summation of a series of quadratic 

polynomials, the PDP's fitness function is presented as follows. 

min∑𝐹𝑖(𝑃𝑖)

𝑛′

𝑖=1

=∑(𝛼𝑖𝑃𝑖
2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖)

𝑛′

𝑖=1

 (1) 

Where, 𝐹𝑖(𝑃𝑖) is the function of fuel/coal cost in i-th unit; 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are the cost 

function's coefficients; 𝑃𝑖  and 𝑛′ are the i-th unit's output and the total number of units 

with their operations. In the practical power system, the PDP objective function con-

sidering "valve point effect" can be expressed as 

𝐹𝑐𝑜𝑠𝑡 = min∑𝐹𝑖(𝑃𝑖)

𝑛′

𝑖=1

=∑(𝛼𝑖𝑃𝑖
2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖 + 𝑒𝑖|sin[𝑓𝑖(𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖)]|)

𝑛′

𝑖=1

 (2) 

Where 𝑒𝑖 and 𝑓𝑖 are the coefficients reflecting the "valve point effect" of the i-th unit; 

𝑃𝑖
𝑚𝑖𝑛 is the i-th unit's lower limit output. 

Constraints 

In order to solve the above problems, a relatively comprehensive PDP model closer to 

the actual operation will be established by comprehensively considering many practi-



cal constraints in power system operation, including power balance, generation capac-

ity, restricted area, and climbing rate limit conditions. 

a) The power balance constraint is 

∑𝐹𝑖

𝑛′

𝑖=1

= 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 (3) 

Where: 𝑃𝑙𝑜𝑎𝑑  and 𝑃𝑙𝑜𝑠𝑠 are the power system's total load and the network loss, which 

can be approximately presented as a function of unit output by coefficient matrix B 

𝑃𝑙𝑜𝑠𝑠 =∑∑𝑃𝑖

𝑛′

𝑗=1

𝑛′

𝑖=1

𝐵𝑖𝑗𝑃𝑗 +∑𝐵0𝑖𝑃𝑖 + 𝐵00

𝑛′

𝑗=1

 (4) 

Where, 𝐵𝑖𝑗 , 𝐵00 , 𝐵0𝑖  are the known transmission loss parameters; 𝑃𝑖  and 𝑃𝑗  are the 

output of the i and j units respectively. 

b) The generation capacity constraint is 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 (5) 

Where: 𝑃𝑖
𝑚𝑎𝑥 is the i-th thermal power unit's upper limit of the output. 

c) The restricted area is 

{

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,1

𝐿   ,

𝑃𝑖,𝑗−1
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖,1

𝐿   ,

𝑃𝑖,𝑛𝑖
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥   ,

 with 𝑗 = 1,2, … , 𝑛𝑖 , 𝑖 = 1,2, … , 𝑛
′ (6) 

Where: 𝑃𝑖,1
𝐿  is the lower limit of the first forbidden area of the i-th unit; 𝑃𝑖,𝑗−1

𝑈  is the 

upper limit of the 𝑗 − 1 forbidden area of the i-th unit; 𝑛𝑖 is the number of the forbid-

den areas of the i-th unit; 𝑃𝑖,𝑛𝑖
𝑈  is the i-th unit's upper limit of the last forbidden area. 

d) Climbing rate limit. 

When the output increases, it is 

𝑃𝑖 − 𝑃𝑖
0 ≤ 𝑈𝑅𝑖 (7) 

When the output is reduced, it is 

𝑃𝑖 − 𝑃𝑖
0 ≤ 𝐷𝑅𝑖  (8) 

Where 𝑃𝑖
0 is the output of the previous stage of unit i; 𝑈𝑅𝑖  and 𝐷𝑅𝑖  are the unit(i) 's 

maximum upward climbing rate MW / time period and the maximum downward 

climbing rate MW / period. 

3 PDP Optimization based on Moth-Frame Algorithm 

3.1 Principle of Moth Frame algorithm 

MFO inspired from the moth and fire are two crucial components considered the can-

didate optimization solution of the problem, moth flies in the decision space, and the 

fire is the best position that the moth has found up to now[11]. Therefore, the fire is 

applied to the "wind vane" for moths to search in the searching space. Each moth-

frame is considered an agent searching to search around a fire and updates its position 

when it finds a better solution. The searching moth and fire agents would be presented 

with a matrix 𝑀 and 𝐹 respectively as follows [11]. 



M = (

𝑚11
𝑚21
⋮
𝑚𝑛1

   

𝑚12
𝑚22
⋮
𝑚𝑛2

   

…
…
⋮
…

   

𝑚1𝑑
𝑚2𝑑
⋮

𝑚𝑛𝑑

)   , F = (

𝐹11
𝐹21
⋮
𝐹𝑛1

   

𝐹12
𝐹22
⋮
𝐹𝑛2

   

…
…
⋮
…

   

𝐹1𝑑
𝐹2𝑑
⋮
𝐹𝑛𝑑

) (9) 

Where, 𝑛 is the number of moths and 𝑑 is the dimension of the variable. The vector-

storing all moth and fire fitness can be expressed as 

𝑂𝑀 = [𝑂𝑀1, 𝑂𝑀2, … , 𝑂𝑀𝑛]
𝑇   , 𝑂𝐹 = [𝑂𝐹1, 𝑂𝐹2, … , 𝑂𝐹𝑛]

𝑇 (10) 

Where: 𝑂𝑀 is the fitness matrix of the moth; 𝑂𝑀1 is the fitness of the first moth; 𝑂𝑀𝑛 

is the fitness of the nth moth; 𝑂𝐹  is the adaptability matrix of the fire; 𝑂𝐹1 is the fit-

ness of the first fire; 𝑂𝐹𝑛  is the fitness of the nth fire. 

Each moth updates its position around its corresponding frame fire: 

𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐹𝑗) (11) 

Where 𝑀𝑖 is the position of the ith moth; 𝐹𝑗 is the position of the jth fire; 𝑆 is the loga-

rithmic spiral function. The logarithmic spiral function is 

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖𝑗𝑒
𝑏𝑡 cos(2𝜋𝑡) + 𝐹𝑗 (12) 

Where 𝑏 is the constant coefficient for logarithmic spiral function with distance 𝐷𝑖𝑗; 𝑡 

is a random number [ - 1 to – 2] in the iteration loops. The smaller t is, the closer the 

search position is to the fire. By taking different values of T, the other position rela-

tions between moth and fire can be obtained. The update mechanism of MFO algo-

rithm with abscissa t is a random number in the range of r ~ 1, and the ordinate is the 

position of the moth. The logarithmic spiral update formula searches new positions 

around the fire by moth agent and effectively utilizes historical optimization solution 

as local development ability and exploring the unknown area as global search ability 

to realize the resolution of the optimization problem. The exploring and exploiting the 

searchability of the algorithm, the number of agent's fires are used to update the posi-

tion changing dynamically under iteration times. The number of agents' fires under 

the current iteration is stated in the following formula. 

𝑁flame = 𝑁 − 𝐿
𝑁 − 1

𝑇
 (13) 

Where: 𝑁flame and N is the number of fires under the current iteration number and 

population the maximum number; 𝑇 and 𝐿  the maximum and the current numbers of 

iterations; if N =  n, it is the same as the number of moths or the number of the max-

imum fire updating the position. 

3.2 Solution of PDP model Using Moth Fire Algorithm 

Agent moth code variables. 

The optimal variable of the PDP problem is the active power output of each unit, and 

the dimension of the problem is equal to the total number of units. Combined with the 

characteristics of the MFO algorithm and PDP model, each moth represents a candi-

date solution of the power system load economic dispatch problem, and the position 

of each moth is a vector composed of the output of each unit. 



P =

(

  
 

𝑝1
1

⋮
𝑝1
𝑖

⋮
𝑝1
𝑛

   

⋯
⋮
⋯
⋮
⋯

   

𝑝𝑖
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⋮
𝑝𝑖
𝑖

⋮
𝑝𝑖
𝑛

   

⋯
⋮
⋯
⋮
⋯

   

𝑝𝑛′
1

⋮

𝑝𝑛′
𝑖

⋮
𝑝𝑛′
𝑛
)

  
 

 (14) 

Where: P is the output moth matrix of the generator set, and the row vector of the 

matrix P represents the specific position of each moth. 

Only the modified position should be in the area, meeting the conditions for the out-

put capacity constraint and the forbidden area constraint. Due to the limitation of unit 

capacity and climbing rate, the output capacity of the first unit has upper and lower 

limits. The lower bound of output is expressed as follows. 

𝑙𝑖 = max (𝑃𝑖
𝑚𝑖𝑛 , 𝑃𝑖

0 − 𝐷𝑅𝑖) (15) 

The upper bound of output is 

𝑢𝑖 = max (𝑃𝑖
𝑚𝑖𝑛 , 𝑃𝑖

0 − 𝑈𝑅𝑖) (16) 

In updating the position, the moth may cross the feasible boundary formed. When one 

or more units fail to meet the output capacity constraint, the maximum range of the 

modified constraint is mapped symmetrically to the interior of the boundary according 

to the number of units violating the boundary constraint. Then the corrected unit out-

put is randomly determined between the limit and the mapping positions within the 

boundary. 

𝑃𝑖 = {

𝑙𝑖 + 𝑅(𝑙𝑖 − 𝑃𝑖)     , 𝑃𝑖 < 𝑙𝑖
𝑢𝑖 + 𝑅(𝑢𝑖 − 𝑃𝑖)   , 𝑃𝑖 > 𝑢𝑖
𝑃𝑖                             , 𝑜𝑡ℎ𝑒𝑟𝑠

 (17) 

Where 𝑅 is a random number generated by uniform distribution between 0 and 1. 

The existence of the forbidden zone makes the decision-making space no longer con-

tinuous, and there is an interruption area that initializes the output of a unit randomly 

between the upper and lower boundaries. The power balance constraint is an equality 

constraint. The penalty function method is used alone to deal with the conditions. 

Most of them are infeasible solutions because of the large amount of time spent in the 

early stage of the algorithm. 

New power balance constraint 

Some steps consider network transmission loss: Set the number of moths 𝑛, the max-

imum cycle iteration number Q and the acceptable unbalanced power value 𝑃0, and 

the cycle count 𝐶0 =  1. T is the number of units that may have a balancing unit, the 

initial value is equal to the total number of units 𝑛′, A random sequence x generated 

by the ordered sequence {1,2,...,g} is generated. Generate a balancing unit sequence 

with (n′ −  T +  1) element from random sequence X. Calculate the network trans-

mission loss 𝑃𝑙𝑜𝑠𝑠, and then approximately determine the output of the balancing unit 

𝑡𝑒𝑚𝑝 = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 − (∑𝑃𝑖 −

𝑛′

𝑖=1

𝑃𝐼) (18) 

Where 𝑃𝐼  is the power used to balance the unit. If the output of the balancing unit is 

within the upper and lower limits of the unit output, check whether it falls in the for-

bidden area; if it falls in the forbidden area, the output of the balancing unit is set as 

the nearest boundary value of the prohibited area; if not, the value of temp is directly 



set as the output value of the balancing unit;  If the output of the balancing unit ex-

ceeds the unit output, the output of the balancing unit is set as the output value of the 

balancing unit If t is greater than 0, return to step 3 to re-enter the internal circulation; 

otherwise, it means that the cycle has completed all units and no balancing unit has 

been found. 

Recalculate the network transmission loss 𝑃𝑙𝑜𝑠𝑠, and use equation (19) to calculate the 

unbalanced power ΔP. if C0 ≤  Q and ΔP >  P0, C1 = C0 + 1 and return to step 2 to 

re-enter the external loop iteration, otherwise, the constraint processing is finished. 

ΔP = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 −∑𝑃𝑖

𝑛′

𝑖=1

 (19) 

Fig. 1 shows a flowchart of the moth flame optimization for the power system PLP 

problem. 

 
 

Fig. 1. A flowchart of the moth flame optimization for the power system PLP problem 

 

Algorithm implementation process 

The specific process of applying moth to fire algorithm to solve the PDP model of 

power system is as follows. 

Step 1: the moth position is initialized, and all moths are randomly initialized between 

the upper and lower bounds of the unit output capacity constraint shown in Eqs. (15) 

and (16). 

𝑃𝑖 = 𝑙𝑖 + 𝑅(𝑢𝑖 − 𝑙𝑖) (20) 



Step 2: unit operation constraint processing, check the position of all moths. If the 

output of a moth falls in the forbidden area, re-initialize the output of the unit whose 

particle falls in the banned area at random until the constraint in the forbidden area is 

met. If the output of some units of a particle exceeds the upper and lower limits, the 

unit output shall be reassigned according to Eq. (16). 

Step 3: power balance constraint treatment. The power balance constraint is treated by 

the balance unit method. The new moth population can be obtained by combining step 

2 and step 3. 

Step 4: fitness assessment, using the cost function shown in Eqs. (1) or (2) to evaluate 

the fitness of all moths. Suppose the balance unit method still does not meet the 

equality constraints. In that case, the penalty function method shown in Eq. (21) is 

used to punish the unbalanced power, forcing the moth to fly away from the infeasible 

region and explore the feasible area. Among them is the total fuel cost (total fitness) 

considering penalty cost, is the fuel cost function of unit I, and is the penalty factor. 

𝐹𝑐𝑜𝑠𝑡 =∑𝐹𝑖(𝑃𝑖)

𝑛′

𝑖=1

+ 𝑘(∑𝑃𝑖 − 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑙𝑜𝑠𝑠

𝑛′

𝑖=1

) (21) 

Step 5: update the location and fitness of the fire. If it is in the first generation, the 

initial population of the moth is directly used as the initial population of the fire. In 

the iteration process, the first m individuals with the best fitness were selected from 

the fire population and the updated moth population as the new fire population, and 

the fire fitness was updated. 

Step 6: moth position update, moth use Eq. (12) to update its position with reference 

to the corresponding fire, and the number of fires decreases dynamically according to 

Eq. (13). 

Step 7: determine the optimal launch and termination conditions. If the maximum 

number of iterations is reached, the iteration will be terminated. The optimal schedul-

ing scheme (the best fire location) and the generation cost (the best fire fitness) of the 

output economic dispatch problem; otherwise, the iterative process is repeated until 

the termination condition is satisfied. 

4 Simulation Results 

In order to verify the reliability and effectiveness of the proposed method, IEEE 6 and 

15 units systems [13] are used for testing the proposed performance. The system of 6-

units is an ieee30bus system, and the total load demand is 1263 MW. In the model 

calculation, the climbing rate limit, network transmission loss, and forbidden zone 

constraints are considered most. The total load demand of 15 unit system is 2630 

MW, and the actual constraints such as forbidden area constraint, climbing rate limit, 

and network transmission loss are taken into account. However, others some other 

units, e.g., 2, 5, and 6, have three prohibited areas, and unit 12 has two. The decision 

interval of the system is a nonconvex decision space with 210 convex intervals. The 

existence of the transmission point effect is considered in the model. 



Fig.2 shows the graph of the daily power generating distribution for the test system of 

6 units. 

 

Fig. 2. The graph of the daily power generating distribution for the test system of 6 units. 

Table 1.   Comparison of results of different algorithms (for IEEE 6 unit system) 

Units output MFO GA[4] PSO[5] DE[6] GWO[9] 

𝑃1 339.91 306.47 356.65 286.44 353.08 

𝑃2 331.18 364.00 329.30 301.02 326.01 

𝑃3 88.31 104.00 102.41 92.96 101.39 

𝑃4 104.00 16.00 97.51 55.28 96.53 

𝑃5 291.21 207.22 198.90 350.88 196.91 

𝑃6 268.36 368.00 244.59 268.50 242.15 

Total power/MW 1275.45 1276.01 1276.03 1276.95 1276.40 

Network loss/MW 12.45 12.96 13.02 12.96 12.44 

Min cost ($ / h) 15 433.07 15 450.00 15 459.00 15 449.77 15 443.82 

Max cost ($ / h) 15 443.08 15 492.00 15 524.00 15 449.87 16 449.87 

Average cost($/h) 15 443.07 15 454.00 15 469.00 15 449.78 15 446.95 

Std. deviation($/h) 0.0010 0.0011 0.0012 0.0013 0.582 2 

Max deviation($/h) 0.21 42.00 5.00 2.11 0.98 

The parameters of the MFO algorithm are set as follows: the number of moth popula-

tion is 40; when applied to three different examples, the maximum iteration times are 

2000 [11]. In Eq. (12), B is a constant 1, t is a random number in the range [- 1 to – 

2]. The penalty factor is 500. The maximum number of iterations is 50, and the allow-

able value of unbalanced power deviation is 0.01 MW. 

The obtained results of the proposed scheme are compared with the other previous 

methods, e.g., GA[4], PSO [5], DE [6], and gray GWO [9]. The number of search 

agents individual is uniformly set to 40 in all algorithms during the simulation, and 

the maximum number of iterations is 2000. Each instance is run separately multiple 

times to ensure the tests' effectiveness, comparability, and robustness. For example, 

the parameters of setting for 15 machines test system, e.g.,  system prohibited generat-

ing units, the total load demand, and the coefficients B: [𝐵𝑖𝑗 ,  𝐵𝑜𝑖 , 𝐵𝑜𝑜] power factors. 



Tables 1 and 2 show the comparison of the suggested MFO with the GA, PSO, DEand 

GWO[9] for test systems of the IEEE30 buses with 6 and 15 units, respectively; 

where the 𝑃1, 𝑃2, . . . 𝑃𝑛 are the generator output power of each branch, 𝑛 is number of 

units of the solution. The values in the Tables are the average value, minimum value, 

maximum value, maximum deviation (the difference between the maximum genera-

tion cost and the minimum generation cost) and standard deviation of the generation 

cost of the 6, and 15 generators systems. It can be seen from Table 1 that for a 6-

machine system, the best result is $15433.07/h, the worst result is $15453.08/h, the 

average result is $15443.07/h, and the standard deviation is 0.0010. The difference 

between the worst and best results is only 0.01 $ / h, indicating that MFO has good 

robustness.  

Table 2. Comparison of results of different algorithms (for IEEE 15-unit test system) 

Units output MFO GA[4] PSO[5] DE[6] GWO[9] 

𝑃1 424.88 383.09 445.81 358.05 441.36 

𝑃2 413.97 455.00 411.63 376.28 407.51 

𝑃3 110.38 130.00 128.02 116.20 126.74 

𝑃4 130.00 20.00 121.88 69.10 120.67 

𝑃5 364.01 259.03 248.62 438.59 246.13 

𝑃6 335.45 460.00 305.74 335.62 302.68 

𝑃7 338.10 465.00 202.33 376.97 200.31 

𝑃8 171.00 60.00 220.81 144.09 218.60 

𝑃9 122.87 148.02 152.46 73.77 150.93 

𝑃10 89.84 42.97 154.58 142.02 153.03 

𝑃11 53.69 73.96 72.45 61.42 71.73 

𝑃12 26.19 45.37 52.16 46.55 51.64 

𝑃13 31.40 25.00 74.27 65.57 73.53 

𝑃14 29.22 37.00 41.06 36.35 40.65 

𝑃15 29.69 52.99 44.52 29.66 44.07 

Total power/MW 2660.08 2662.40 2668.40 2662.29 2660.36 

Network loss/MW 30.08 32.43 38.28 32.28 30.36 

Min cost ($/h) 32697.15 32858.00 33063.54 32 751.39 32732.95 

Max cost ($/h) 33398.04 33331.00 33337.00 32945.00 32756.01 

Average cost($/h) 32727.95 33039.00 33228.00 32756.01 32735.06 

Std. deviation($/h) 0.0293 0.09 0.81 0.05 0.36 

Max deviation($//h) 0.89 473.00 273.46 193.61 23.06 

It can be seen from Table 2 that for a 15 machine system, the minimum, maximum, 

and average cost of the 50 test results of the MFO algorithm are 32697.15 $ / h, 

33398.04 $ / h, and 32727.95 $ / h, respectively, and the standard deviation is 0.0293. 

Compared with other algorithms, MFO still shows efficient and stable optimization 

ability, and the maximum deviation is only 0.89 $ / h, which indicates that the MFO 

algorithm has good robustness and stability.  



 

Fig. 3. The comparison obtained result curves of the suggested algorithm with the other algo-

rithms for the test system of 15 units. 

Fig. 3 shows the comparison obtained result curves of the suggested FMO with the 

other algorithms. e.g., DE, PSO, and GWO for the test systems of 15 units. The ob-

served figure shows that the MFO optimization method has better quality perfor-

mance in convergence speed and time consumption than PSO and GWO methods. In 

general, we can say that the MFO can solve the PDP problem in the power system 

with good robustness and significant economic benefits. 

5 Conclusion 

This paper suggested a new solution to solving the power generating distribution 

planning (PDP) problem based on a new swarm-based technique called moth flame 

optimization (MFO) to reduce power loss and cost consumption. PDP model is a crit-

ical component of the power system's financial performance, considering various 

system operation restrictions that are typical multi-constrained nonlinear optimization 

problems. The experimental results of the suggested method were compared to the 

findings of other algorithms, the IEEE 30 buses with 6-unit and 15-unit systems. 

Compared results show that the proposed MFO produced more optimal and stable 

derivatives that can effectively handle the PDP problem, resulting in significant cost 

gains and save fuels. 
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