
Linux Kernel and Driver Development Training

Linux Kernel and Driver
Development Training

free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Latest update: May 17, 2016.

Document updates and sources:
http://free-electrons.com/doc/training/linux-kernel

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@free-electrons.com

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/476

http://free-electrons.com/doc/training/linux-kernel
mailto:feedback@free-electrons.com

Rights to copy

© Copyright 2004-2016, Free Electrons
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute

the resulting work only under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of

this work.
▶ Any of these conditions can be waived if you get permission from the copyright

holder.

Your fair use and other rights are in no way affected by the above.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/476

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hyperlinks in the document

There are many hyperlinks in the document
▶ Regular hyperlinks:

http://kernel.org/

▶ Kernel documentation links:
Documentation/kmemcheck.txt

▶ Links to kernel source files and directories:
drivers/input
include/linux/fb.h

▶ Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/476

http://kernel.org/
http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://lxr.free-electrons.com/source/drivers/input
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=file_operations

Free Electrons at a glance

▶ Engineering company created in 2004
(not a training company!)

▶ Locations: Orange, Toulouse, Lyon (France)
▶ Serving customers all around the world

See http://free-electrons.com/company/customers/

▶ Head count: 12
Only Free Software enthusiasts!

▶ Focus: Embedded Linux, Linux kernel, Android Free Software
/ Open Source for embedded and real-time systems.

▶ Activities: development, training, consulting, technical
support.

▶ Added value: get the best of the user and development
community and the resources it offers.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/476

http://free-electrons.com/company/customers/

Free Electrons on-line resources

▶ All our training materials:
http://free-electrons.com/docs/

▶ Technical blog:
http://free-electrons.com/blog/

▶ Quarterly newsletter:
http://lists.free-
electrons.com/mailman/listinfo/newsletter

▶ News and discussions (Google +):
https://plus.google.com/+FreeElectronsDevelopers

▶ News and discussions (LinkedIn):
http://linkedin.com/groups/Free-Electrons-4501089

▶ Quick news (Twitter):
http://twitter.com/free_electrons

▶ Linux Cross Reference - browse Linux kernel sources on-line:
http://lxr.free-electrons.com

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/476

http://free-electrons.com/docs/
http://free-electrons.com/blog/
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://lists.free-electrons.com/mailman/listinfo/newsletter
https://plus.google.com/+FreeElectronsDevelopers
http://linkedin.com/groups/Free-Electrons-4501089
http://twitter.com/free_electrons
http://lxr.free-electrons.com

Generic course information

Generic course
information
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/476

Hardware used in this training session

BeagleBone Black, from CircuitCo
▶ Texas Instruments AM335x (ARM Cortex-A8)
▶ Powerful CPU, with 3D acceleration,

additional processors (PRUs) and lots of
peripherals.

▶ 512 MB of RAM
▶ 2 GB of on-board eMMC storage

(4 GB in Rev C)
▶ USB host and USB device ports
▶ microSD slot
▶ HDMI port
▶ 2 x 46 pins headers, with access to many

expansion buses (I2C, SPI, UART and more)
▶ A huge number of expansion boards, called

capes. See http://beagleboardtoys.com/.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/476

http://beagleboardtoys.com/

Do not damage your BeagleBone Black!

▶ Do not remove power abruptly:
▶ Boards components have been damaged by removing the

power or USB cable in an abrupt way, not leaving the PMIC
the time to switch off the components in a clean way. See
http://bit.ly/1FWHNZi

▶ Reboot (reboot) or shutdown (halt) the board in software
when Linux is running.

▶ You can also press the RESET button to reset and reboot.
▶ When there is no software way, you can also switch off the

board by pressing the POWER button for 8 seconds.
▶ Do not leave your board powered on a metallic surface (like a

laptop with a metal finish).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/476

http://bit.ly/1FWHNZi

Shopping list: hardware for this course

▶ BeagleBone Black - Multiple distributors:
See http://beagleboard.org/Products/

▶ Nintendo Nunchuck with UEXT connector:
Olimex: http://j.mp/1dTYLfs

▶ Breadboard jumper wires - Male ends:
Olimex: http://j.mp/IUaBsr

▶ USB Serial Cable - Male ends:
Olimex: http://j.mp/1eUuY2K

▶ USB Serial Cable - Female ends:
Olimex: http://j.mp/18Hk8yF

▶ Note that both USB serial cables are the same.
Only the gender of their connector changes.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/476

http://beagleboard.org/Products/
http://j.mp/1dTYLfs
http://j.mp/IUaBsr
http://j.mp/1eUuY2K
http://j.mp/18Hk8yF

Participate!

During the lectures...
▶ Don't hesitate to ask questions. Other people in the audience

may have similar questions too.
▶ This helps the trainer to detect any explanation that wasn't

clear or detailed enough.
▶ Don't hesitate to share your experience, for example to

compare Linux / Android with other operating systems used
in your company.

▶ Your point of view is most valuable, because it can be similar
to your colleagues' and different from the trainer's.

▶ Your participation can make our session more interactive and
make the topics easier to learn.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/476

Practical lab guidelines

During practical labs...
▶ We cannot support more than 8 workstations at once (each

with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

▶ So, if you are more than 8 participants, please form up to 8
working groups.

▶ Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

▶ Don't hesitate to copy and paste commands from the PDF
slides and labs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/476

Advise: write down your commands!

During practical labs, write down all your commands in a text file.
▶ You can save a lot of time re-using

commands in later labs.
▶ This helps to replay your work if

you make significant mistakes.
▶ You build a reference to remember

commands in the long run.
▶ That's particular useful to keep

kernel command line settings that
you used earlier.

▶ Also useful to get help from the
instructor, showing the commands
that you run.

gedit ~/lab-history.txt

Booting kernel through tftp:
setenv bootargs console=ttyS0 root=/dev/nfs
setenv bootcmd tftp 0x21000000 zImage; tftp
0x22000000 dtb; bootz 0x21000000 - 0x2200...

Lab commands

Cross-compiling kernel:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
make sama5_defconfig

Making ubifs images:
mkfs.ubifs -d rootfs -o root.ubifs -e 124KiB
-m 2048 -c 1024

Encountered issues:
Restart NFS server after editing /etc/exports!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/476

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

▶ If you complete your labs before other people, don't hesitate
to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

▶ Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

▶ Don't hesitate to report potential bugs to your instructor.
▶ Don't hesitate to look for solutions on the Internet as well.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/476

Command memento sheet

▶ This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

▶ It saves us 1 day of UNIX / Linux
command line training.

▶ Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/command_memento.pdf

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/476

http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/command_memento.pdf

vi basic commands

▶ The vi editor is very useful to
make quick changes to files in an
embedded target.

▶ Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone's needs!

▶ Get an electronic copy on
http://free-electrons.com/
doc/training/embedded-
linux/vi_memento.pdf

▶ You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/476

http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf
http://free-electrons.com/doc/training/embedded-linux/vi_memento.pdf

Practical lab - Training Setup

Prepare your lab environment
▶ Download the lab archive
▶ Enforce correct permissions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/476

Linux Kernel Introduction

Linux Kernel
Introduction
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/476

Linux Kernel Introduction

Linux features

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/476

History

▶ The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

▶ The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

▶ Linux quickly started to be used as the kernel for free software
operating systems

▶ Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

▶ Nowadays, more than one thousand people contribute to each
kernel release, individuals or companies big and small.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/476

Linux kernel key features

▶ Portability and hardware
support. Runs on most
architectures.

▶ Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

▶ Compliance to standards
and interoperability.

▶ Exhaustive networking
support.

▶ Security. It can't hide its
flaws. Its code is reviewed
by many experts.

▶ Stability and reliability.
▶ Modularity. Can include

only what a system needs
even at run time.

▶ Easy to program. You can
learn from existing code.
Many useful resources on
the net.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/476

Linux kernel in the system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/476

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware

independent APIs to allow user space applications and
libraries to use the hardware resources.

▶ Handle concurrent accesses and usage of hardware
resources from different applications.

▶ Example: a single network interface is used by multiple user
space applications through various network connections. The
kernel is responsible to ``multiplex'' the hardware resource.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/476

System calls

▶ The main interface between the kernel and user space is the
set of system calls

▶ About 300 system calls that provide the main kernel services
▶ File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

▶ This interface is stable over time: only new system calls can
be added by the kernel developers

▶ This system call interface is wrapped by the C library, and
user space applications usually never make a system call
directly but rather use the corresponding C library function

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/476

Pseudo filesystems

▶ Linux makes system and kernel information available in user
space through pseudo filesystems, sometimes also called
virtual filesystems

▶ Pseudo filesystems allow applications to see directories and
files that do not exist on any real storage: they are created
and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
▶ proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

▶ sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/476

Inside the Linux kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/476

Supported hardware architectures

▶ See the arch/ directory in the kernel sources
▶ Minimum: 32 bit processors, with or without MMU, and gcc

support
▶ 32 bit architectures (arch/ subdirectories)

Examples: arm, avr32, blackfin, c6x, m68k, microblaze,
mips, score, sparc, um

▶ 64 bit architectures:
Examples: alpha, arm64, ia64, tile

▶ 32/64 bit architectures
Examples: powerpc, x86, sh, sparc

▶ Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/476

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/arm
http://lxr.free-electrons.com/source/arch/avr32
http://lxr.free-electrons.com/source/arch/blackfin
http://lxr.free-electrons.com/source/arch/c6x
http://lxr.free-electrons.com/source/arch/m68k
http://lxr.free-electrons.com/source/arch/microblaze
http://lxr.free-electrons.com/source/arch/mips
http://lxr.free-electrons.com/source/arch/score
http://lxr.free-electrons.com/source/arch/sparc
http://lxr.free-electrons.com/source/arch/um
http://lxr.free-electrons.com/source/arch/alpha
http://lxr.free-electrons.com/source/arch/arm64
http://lxr.free-electrons.com/source/arch/ia64
http://lxr.free-electrons.com/source/arch/tile
http://lxr.free-electrons.com/source/arch/powerpc
http://lxr.free-electrons.com/source/arch/x86
http://lxr.free-electrons.com/source/arch/sh
http://lxr.free-electrons.com/source/arch/sparc

Embedded Linux Kernel Usage

Embedded Linux
Kernel Usage
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/476

Embedded Linux Kernel Usage

Linux kernel sources

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/476

Location of kernel sources

▶ The official versions of the Linux kernel, as released by Linus
Torvalds, are available at http://www.kernel.org

▶ These versions follow the development model of the kernel
▶ However, they may not contain the latest development from a

specific area yet. Some features in development might not be
ready for mainline inclusion yet.

▶ Many chip vendors supply their own kernel sources
▶ Focusing on hardware support first
▶ Can have a very important delta with mainline Linux
▶ Useful only when mainline hasn't caught up yet.

▶ Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

▶ Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI, network,
etc.), other communities (real-time, etc.)

▶ No official releases, only development trees are available.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/476

http://www.kernel.org

Getting Linux sources

▶ The kernel sources are available from
http://kernel.org/pub/linux/kernel as full tarballs
(complete kernel sources) and patches (differences between
two kernel versions).

▶ However, more and more people use the git version control
system. Absolutely needed for kernel development!

▶ Fetch the entire kernel sources and history
git clone git://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git

▶ Create a branch that starts at a specific stable version
git checkout -b <name-of-branch> v3.11

▶ Web interface available at http://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/tree/.

▶ Read more about Git at http://git-scm.com/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/476

http://kernel.org/pub/linux/kernel
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git-scm.com/

Linux kernel size (1)

▶ Linux 3.10 sources:
Raw size: 573 MB (43,000 files, approx 15,800,000 lines)
gzip compressed tar archive: 105 MB
bzip2 compressed tar archive: 83 MB (better)
xz compressed tar archive: 69 MB (best)

▶ Minimum Linux 3.17 compiled kernel size, booting on the
ARM Versatile board (hard drive on PCI, ext2 filesystem, ELF
executable support, framebuffer console and input devices):
876 KB (compressed), 2.3 MB (raw)

▶ Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...

▶ The Linux core (scheduler, memory management...) is pretty
small!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/476

Linux kernel size (2)

As of kernel version 3.10.
▶ drivers/: 49.4%
▶ arch/: 21.9%
▶ fs/: 6.0%
▶ include/: 4.7%
▶ sound/: 4.4%
▶ Documentation/: 4.0%
▶ net/: 3.9%
▶ firmware/: 1.0%
▶ kernel/: 1.0%

▶ tools/: 0.9%
▶ scripts/: 0.5%
▶ mm/: 0.5%
▶ crypto/: 0.4%
▶ security/: 0.4%
▶ lib/: 0.4%
▶ block/: 0.2%
▶ ...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/476

http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/firmware/
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/tools/
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/mm/
http://lxr.free-electrons.com/source/crypto/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/block/

Practical lab - Downloading kernel source code

▶ Clone the mainline Linux source
tree with git

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/476

Kernel Source Code

Kernel Source
Code
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/476

Kernel Source Code

Linux Code and Device Drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/476

Programming language

▶ Implemented in C like all Unix systems. (C was created to
implement the first Unix systems)

▶ A little Assembly is used too:
▶ CPU and machine initialization, exceptions
▶ Critical library routines.

▶ No C++ used, see http://www.tux.org/lkml/#s15-3
▶ All the code compiled with gcc

▶ Many gcc specific extensions used in the kernel code, any
ANSI C compiler will not compile the kernel

▶ See https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/C-
Extensions.html

▶ Ongoing work to compile the kernel with the LLVM compiler.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/476

http://www.tux.org/lkml/#s15-3
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/C-Extensions.html

No C library

▶ The kernel has to be standalone and can't use user space
code.

▶ User space is implemented on top of kernel services, not the
opposite.

▶ Kernel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

▶ So, you can't use standard C library functions in kernel code.
(printf(), memset(), malloc(),...).

▶ Fortunately, the kernel provides similar C functions for your
convenience, like printk(), memset(), kmalloc(), ...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/476

http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=kmalloc

Portability

▶ The Linux kernel code is designed to be portable
▶ All code outside arch/ should be portable
▶ To this aim, the kernel provides macros and functions to

abstract the architecture specific details
▶ Endianness

▶ cpu_to_be32()
▶ cpu_to_le32()
▶ be32_to_cpu()
▶ le32_to_cpu()

▶ I/O memory access
▶ Memory barriers to provide ordering guarantees if needed
▶ DMA API to flush and invalidate caches if needed

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/476

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/ident?i=cpu_to_be32
http://lxr.free-electrons.com/ident?i=cpu_to_le32
http://lxr.free-electrons.com/ident?i=be32_to_cpu
http://lxr.free-electrons.com/ident?i=le32_to_cpu

No floating point computation

▶ Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like
on certain ARM CPUs).

▶ Don't be confused with floating point related configuration
options

▶ They are related to the emulation of floating point operation
performed by the user space applications, triggering an
exception into the kernel.

▶ Using soft-float, i.e. emulation in user space, is however
recommended for performance reasons.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/476

No stable Linux internal API

▶ The internal kernel API to implement kernel code can undergo
changes between two releases.

▶ In-tree drivers are updated by the developer proposing the API
change: works great for mainline code.

▶ An out-of-tree driver compiled for a given version may no
longer compile or work on a more recent one.

▶ See Documentation/stable_api_nonsense.txt in kernel
sources for reasons why.

▶ Of course, the kernel to user space API does not change
(system calls, /proc, /sys), as it would break existing
programs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/476

http://free-electrons.com/kerneldoc/latest/stable_api_nonsense.txt

Kernel memory constraints

▶ No memory protection
▶ Accessing illegal memory locations result in (often fatal)

kernel oopses.
▶ Fixed size stack (8 or 4 KB). Unlike in user space, there's no

way to make it grow.
▶ Kernel memory can't be swapped out (for the same reasons).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/476

Linux kernel licensing constraints

▶ The Linux kernel is licensed under the GNU General Public
License version 2

▶ This license gives you the right to use, study, modify and share
the software freely

▶ However, when the software is redistributed, either modified
or unmodified, the GPL requires that you redistribute the
software under the same license, with the source code

▶ If modifications are made to the Linux kernel (for example to
adapt it to your hardware), it is a derivative work of the kernel,
and therefore must be released under GPLv2

▶ The validity of the GPL on this point has already been verified
in courts

▶ However, you're only required to do so
▶ At the time the device starts to be distributed
▶ To your customers, not to the entire world

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/476

Proprietary code and the kernel

▶ It is illegal to distribute a binary kernel that includes statically
compiled proprietary drivers

▶ The kernel modules are a gray area: are they derived works of
the kernel or not?

▶ The general opinion of the kernel community is that
proprietary drivers are bad: http://j.mp/fbyuuH

▶ From a legal point of view, each driver is probably a different
case

▶ Is it really useful to keep your drivers secret?
▶ There are some examples of proprietary drivers, like the Nvidia

graphics drivers
▶ They use a wrapper between the driver and the kernel
▶ Unclear whether it makes it legal or not

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/476

http://j.mp/fbyuuH

Advantages of GPL drivers

▶ You don't have to write your driver from scratch. You can
reuse code from similar free software drivers.

▶ You could get free community contributions, support, code
review and testing, though this generally only happens with
code submitted for the mainline kernel.

▶ Your drivers can be freely and easily shipped by others (for
example by Linux distributions or embedded Linux build
systems).

▶ Pre-compiled drivers work with only one kernel version and
one specific configuration, making life difficult for users who
want to change the kernel version.

▶ Legal certainty, you are sure that a GPL driver is fine from a
legal point of view.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/476

Advantages of in-tree kernel drivers

▶ Once your sources are accepted in the mainline tree, they are
maintained by people making changes.

▶ Near cost-free maintenance, security fixes and improvements.
▶ Easy access to your sources by users.
▶ Many more people reviewing your code.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/476

User space device drivers 1/3

▶ In some cases, it is possible to implement device drivers in
user space!

▶ Can be used when
▶ The kernel provides a mechanism that allows user space

applications to directly access the hardware.
▶ There is no need to leverage an existing kernel subsystem such

as the networking stack or filesystems.
▶ There is no need for the kernel to act as a ``multiplexer'' for

the device: only one application accesses the device.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/476

User space device drivers 2/3

▶ Possibilities for user space device drivers:
▶ USB with libusb, http://www.libusb.org/
▶ SPI with spidev, Documentation/spi/spidev
▶ I2C with i2cdev, Documentation/i2c/dev-interface
▶ Memory-mapped devices with UIO, including interrupt

handling, Documentation/DocBook/uio-howto/
▶ Certain classes of devices (printers, scanners, 2D/3D graphics

acceleration) are typically handled partly in kernel space,
partly in user space.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/476

http://www.libusb.org/
http://free-electrons.com/kerneldoc/latest/spi/spidev
http://free-electrons.com/kerneldoc/latest/i2c/dev-interface
http://free-electrons.com/kerneldoc/latest/DocBook/uio-howto/

User space device drivers 3/3

▶ Advantages
▶ No need for kernel coding skills. Easier to reuse code between

devices.
▶ Drivers can be written in any language, even Perl!
▶ Drivers can be kept proprietary.
▶ Driver code can be killed and debugged. Cannot crash the

kernel.
▶ Can be swapped out (kernel code cannot be).
▶ Can use floating-point computation.
▶ Less in-kernel complexity.
▶ Potentially higher performance, especially for memory-mapped

devices, thanks to the avoidance of system calls.
▶ Drawbacks

▶ Less straightforward to handle interrupts.
▶ Increased interrupt latency vs. kernel code.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/476

Kernel Source Code

Linux sources

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/476

Linux sources structure 1/5

▶ arch/<ARCH>
▶ Architecture specific code
▶ arch/<ARCH>/mach-<machine>, machine/board specific code
▶ arch/<ARCH>/include/asm, architecture-specific headers
▶ arch/<ARCH>/boot/dts, Device Tree source files, for some

architectures
▶ block/

▶ Block layer core
▶ COPYING

▶ Linux copying conditions (GNU GPL)
▶ CREDITS

▶ Linux main contributors
▶ crypto/

▶ Cryptographic libraries

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/476

http://lxr.free-electrons.com/source/block/
http://lxr.free-electrons.com/source/COPYING
http://lxr.free-electrons.com/source/CREDITS
http://lxr.free-electrons.com/source/crypto/

Linux sources structure 2/5
▶ Documentation/

▶ Kernel documentation. Don't miss it!
▶ drivers/

▶ All device drivers except sound ones (usb, pci...)
▶ firmware/

▶ Legacy: firmware images extracted from old drivers
▶ fs/

▶ Filesystems (fs/ext4/, etc.)
▶ include/

▶ Kernel headers
▶ include/linux/

▶ Linux kernel core headers
▶ include/uapi/

▶ User space API headers
▶ init/

▶ Linux initialization (including init/main.c)
▶ ipc/

▶ Code used for process communication
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/476

http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/firmware/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/fs/ext4/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/include/linux/
http://lxr.free-electrons.com/source/include/uapi/
http://lxr.free-electrons.com/source/init/
http://lxr.free-electrons.com/source/init/main.c
http://lxr.free-electrons.com/source/ipc/

Linux sources structure 3/5

▶ Kbuild
▶ Part of the kernel build system

▶ Kconfig
▶ Top level description file for configuration parameters

▶ kernel/
▶ Linux kernel core (very small!)

▶ lib/
▶ Misc library routines (zlib, crc32...)

▶ MAINTAINERS
▶ Maintainers of each kernel part. Very useful!

▶ Makefile
▶ Top Linux Makefile (sets arch and version)

▶ mm/
▶ Memory management code (small too!)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/476

http://lxr.free-electrons.com/source/Kbuild
http://lxr.free-electrons.com/source/Kconfig
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/MAINTAINERS
http://lxr.free-electrons.com/source/Makefile
http://lxr.free-electrons.com/source/mm/

Linux sources structure 4/5

▶ net/
▶ Network support code (not drivers)

▶ README
▶ Overview and building instructions

▶ REPORTING-BUGS
▶ Bug report instructions

▶ samples/
▶ Sample code (markers, kprobes, kobjects...)

▶ scripts/
▶ Scripts for internal or external use

▶ security/
▶ Security model implementations (SELinux...)

▶ sound/
▶ Sound support code and drivers

▶ tools/
▶ Code for various user space tools (mostly C)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/476

http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/README
http://lxr.free-electrons.com/source/REPORTING-BUGS
http://lxr.free-electrons.com/source/samples/
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/tools/

Linux sources structure 5/5

▶ usr/
▶ Code to generate an initramfs cpio archive

▶ virt/
▶ Virtualization support (KVM)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/476

http://lxr.free-electrons.com/source/usr/
http://lxr.free-electrons.com/source/virt/

Kernel Source Code

Kernel source management tools

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/476

Cscope

▶ Tool to browse source code (mainly C, but also C++ or Java)
▶ Supports huge projects like the Linux kernel. Typically takes

less than 1 min. to index the whole Linux sources.
▶ In Linux kernel sources, two ways of running it:

▶ cscope -Rk
All files for all architectures at once

▶ make cscope
cscope -d cscope.out
Only files for your current architecture

▶ Allows searching for a symbol, a definition, functions, strings,
files, etc.

▶ Integration with editors like vim and emacs.
▶ Dedicated graphical front-end: KScope

▶ http://cscope.sourceforge.net/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/476

http://cscope.sourceforge.net/

Cscope screenshot

[Tab]: move the cursor between search results and commands
[Ctrl] [D]: exit cscope

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/476

LXR: Linux Cross Reference

▶ Generic source indexing tool and code browser
▶ Web server based, very easy and fast to use
▶ Very easy to find the declaration, implementation or usage of

symbols
▶ Supports C and C++
▶ Supports huge code projects such as the Linux kernel (431

MB of source code in version 3.0).
▶ Takes a little time and patience to setup (configuration,

indexing, web server configuration)
▶ You don't need to set up LXR by yourself. Use our

http://lxr.free-electrons.com server!
▶ http://sourceforge.net/projects/lxr

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/476

http://lxr.free-electrons.com
http://sourceforge.net/projects/lxr

LXR screenshot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/476

Practical lab - Kernel Source Code - Exploring

▶ Explore kernel sources manually
▶ Use automated tools to explore the

source code

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/476

Kernel Source Code

Kernel configuration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/476

Kernel configuration and build system

▶ The kernel configuration and build system is based on
multiple Makefiles

▶ One only interacts with the main Makefile, present at the
top directory of the kernel source tree

▶ Interaction takes place
▶ using the make tool, which parses the Makefile
▶ through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run make help
to see all available targets.

▶ Example
▶ cd linux-3.6.x/
▶ make <target>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/476

http://lxr.free-electrons.com/source/Makefile

Kernel configuration (1)

▶ The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

▶ Thousands of options are available, that are used to
selectively compile parts of the kernel source code

▶ The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

▶ The set of options depends
▶ On your hardware (for device drivers, etc.)
▶ On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/476

Kernel configuration (2)

▶ The configuration is stored in the .config file at the root of
kernel sources

▶ Simple text file, key=value style
▶ As options have dependencies, typically never edited by hand,

but through graphical or text interfaces:
▶ make xconfig, make gconfig (graphical)
▶ make menuconfig, make nconfig (text)
▶ You can switch from one to another, they all load/save the

same .config file, and show the same set of options
▶ To modify a kernel in a GNU/Linux distribution: the

configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/476

Kernel or module?

▶ The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

▶ This is the file that gets loaded in memory by the bootloader
▶ All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however

be compiled as modules
▶ These are plugins that can be loaded/unloaded dynamically to

add/remove features to the kernel
▶ Each module is stored as a separate file in the filesystem,

and therefore access to a filesystem is mandatory to use
modules

▶ This is not possible in the early boot procedure of the kernel,
because no filesystem is available

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/476

Kernel option types

There are different types of options
▶ bool options, they are either

▶ true (to include the feature in the kernel) or
▶ false (to exclude the feature from the kernel)

▶ tristate options, they are either
▶ true (to include the feature in the kernel image) or
▶ module (to include the feature as a kernel module) or
▶ false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values
▶ string options, to specify string values

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/476

Kernel option dependencies

▶ There are dependencies between kernel options
▶ For example, enabling a network driver requires the network

stack to be enabled
▶ Two types of dependencies

▶ depends on dependencies. In this case, option A that depends
on option B is not visible until option B is enabled

▶ select dependencies. In this case, with option A depending
on option B, when option A is enabled, option B is
automatically enabled

▶ make xconfig allows to see all options, even the ones that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/476

make xconfig

make xconfig

▶ The most common graphical interface to configure the kernel.
▶ Make sure you read

help -> introduction: useful options!

▶ File browser: easier to load configuration files
▶ Search interface to look for parameters
▶ Required Debian / Ubuntu packages: libqt4-dev g++

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/476

make xconfig screenshot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/476

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/476

Kernel configuration options

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/476

Corresponding .config file excerpt
Options are grouped by sections and are prefixed with CONFIG_.
#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#
DOS/FAT/NT Filesystems
#
CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m
CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/476

make gconfig

make gconfig

▶ GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

▶ Just lacking a search
functionality.

▶ Required Debian packages:
libglade2-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/476

make menuconfig

make menuconfig

▶ Useful when no graphics are
available. Pretty convenient
too!

▶ Same interface found in
other tools: BusyBox,
Buildroot...

▶ Required Debian packages:
libncurses-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/476

make nconfig

make nconfig

▶ A newer, similar text
interface

▶ More user friendly (for
example, easier to access
help information).

▶ Required Debian packages:
libncurses-dev

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/476

make oldconfig

make oldconfig

▶ Needed very often!
▶ Useful to upgrade a .config file from an earlier kernel release
▶ Issues warnings for configuration parameters that no longer

exist in the new kernel.
▶ Asks for values for new parameters (while xconfig and

menuconfig silently set default values for new parameters).
If you edit a .config file by hand, it's strongly recommended to
run make oldconfig afterwards!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/476

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your

kernel no longer works.
▶ If you don't remember all the changes you made, you can get

back to your previous configuration:
$ cp .config.old .config

▶ All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup
copy.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/476

Configuration per architecture

▶ The set of configuration options is architecture dependent
▶ Some configuration options are very architecture-specific
▶ Most of the configuration options (global kernel options,

network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

▶ By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

▶ The architecture is not defined inside the configuration, but at
a higher level

▶ We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/476

Kernel Source Code

Compiling and installing the kernel
for the host system

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/476

Kernel compilation

▶ make
▶ in the main kernel source directory
▶ Remember to run multiple jobs in parallel if you have multiple

CPU cores. Example: make -j 4
▶ No need to run as root!

▶ Generates
▶ vmlinux, the raw uncompressed kernel image, in the ELF

format, useful for debugging purposes, but cannot be booted
▶ arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
▶ bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,

etc.
▶ arch/<arch>/boot/dts/*.dtb, compiled Device Tree files (on

some architectures)
▶ All kernel modules, spread over the kernel source tree, as .ko

files.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/476

Kernel installation

▶ make install
▶ Does the installation for the host system by default, so needs

to be run as root. Generally not used when compiling for an
embedded system, as it installs files on the development
workstation.

▶ Installs
▶ /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

▶ /boot/System.map-<version>
Stores kernel symbol addresses

▶ /boot/config-<version>
Kernel configuration for this version

▶ Typically re-runs the bootloader configuration utility to take
the new kernel into account.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/476

Module installation

▶ make modules_install
▶ Does the installation for the host system by default, so needs

to be run as root
▶ Installs all modules in /lib/modules/<version>/

▶ kernel/
Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

▶ modules.alias
Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd_mixer_oss

▶ modules.dep, modules.dep.bin (binary hashed)
Module dependencies

▶ modules.symbols, modules.symbols.bin (binary hashed)
Tells which module a given symbol belongs to.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/476

Kernel cleanup targets

▶ Clean-up generated files (to force
re-compilation):
make clean

▶ Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

▶ Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/476

Kernel Source Code

Cross-compiling the kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/476

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture
▶ Much faster than compiling natively, when the target system

is much slower than your GNU/Linux workstation.
▶ Much easier as development tools for your GNU/Linux

workstation are much easier to find.
▶ To make the difference with a native compiler, cross-compiler

executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-
arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/476

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

▶ ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

▶ Example: arm if you want to compile a kernel for the arm
architecture.

▶ CROSS_COMPILE is the prefix of the cross compilation tools
▶ Example: arm-linux- if your compiler is arm-linux-gcc

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/476

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/476

Predefined configuration files

▶ Default configuration files available, per board or per-CPU
family

▶ They are stored in arch/<arch>/configs/, and are just
minimal .config files

▶ This is the most common way of configuring a kernel for
embedded platforms

▶ Run make help to find if one is available for your platform
▶ To load a default configuration file, just run

make acme_defconfig
▶ This will overwrite your existing .config file!

▶ To create your own default configuration file
▶ make savedefconfig, to create a minimal configuration file
▶ mv defconfig arch/<arch>/configs/myown_defconfig

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/476

Configuring the kernel

▶ After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

▶ As the architecture is different from your host architecture
▶ Some options will be different from the native configuration

(processor and architecture specific options, specific drivers,
etc.)

▶ Many options will be identical (filesystems, network protocols,
architecture-independent drivers, etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/476

Device Tree

▶ Many embedded architectures have a lot of non-discoverable
hardware.

▶ Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using a
special hardware description language in a Device Tree.

▶ ARM, PowerPC, OpenRISC, ARC, Microblaze are examples of
architectures using the Device Tree.

▶ A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, passed at boot time
to the kernel.

▶ There is one different Device Tree for each board/platform
supported by the kernel, available in
arch/arm/boot/dts/<board>.dtb.

▶ The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/476

Customize your board device tree!

Often needed for embedded board users:
▶ To describe external devices attached

to non-discoverable busses (such as
I2C) and configure them.

▶ To configure pin muxing: choosing
what SoC signals are made available
on the board external connectors.

▶ To configure some system parameters:
flash partitions, kernel command line
(other ways exist)

▶ Useful reference: Device Tree for
Dummies, Thomas Petazzoni (Apr.
2014): http://j.mp/1jQU6NR

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/476

http://j.mp/1jQU6NR

Building and installing the kernel

▶ Run make
▶ Copy the final kernel image to the target storage

▶ can be zImage, vmlinux, bzImage in arch/<arch>/boot
▶ copying the Device Tree Blob might be necessary as well, they

are available in arch/<arch>/boot/dts

▶ make install is rarely used in embedded development, as the
kernel image is a single file, easy to handle

▶ It is however possible to customize the make install behaviour
in arch/<arch>/boot/install.sh

▶ make modules_install is used even in embedded
development, as it installs many modules and description files

▶ make INSTALL_MOD_PATH=<dir>/ modules_install
▶ The INSTALL_MOD_PATH variable is needed to install the

modules in the target root filesystem instead of your host root
filesystem.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/476

Booting with U-Boot

▶ Recent versions of U-Boot can boot the zImage binary.
▶ Older versions require a special kernel image format: uImage

▶ uImage is generated from zImage using the mkimage tool. It is
done automatically by the kernel make uImage target.

▶ On some ARM platforms, make uImage requires passing a
LOADADDR environment variable, which indicates at which
physical memory address the kernel will be executed.

▶ In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.

▶ The typical boot process is therefore:
1. Load zImage or uImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y (zImage case), or

bootm X - Y (uImage case)
The - in the middle indicates no initramfs

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/476

Kernel command line

▶ In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

▶ The kernel command line is a string that defines various
arguments to the kernel

▶ It is very important for system configuration
▶ root= for the root filesystem (covered later)
▶ console= for the destination of kernel messages
▶ Many more exist. The most important ones are documented in

Documentation/kernel-parameters.txt in kernel sources.
▶ This kernel command line is either

▶ Passed by the bootloader. In U-Boot, the contents of the
bootargs environment variable is automatically passed to the
kernel

▶ Built into the kernel, using the CONFIG_CMDLINE option.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/476

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Practical lab - Kernel compiling and booting

1st lab: board and bootloader setup:
▶ Prepare the board and access its

serial port
▶ Configure its bootloader to use

TFTP
2nd lab: kernel compiling and booting:

▶ Set up a cross-compiling
environment

▶ Cross-compile a kernel for an ARM
target platform

▶ Boot this kernel from a directory
on your workstation, accessed by
the board through NFS

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/476

Kernel Source Code

Using kernel modules

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/476

Advantages of modules

▶ Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

▶ Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

▶ Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only need later.

▶ Caution: once loaded, have full control and privileges in the
system. No particular protection. That's why only the root
user can load and unload modules.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/476

Module dependencies

▶ Some kernel modules can depend on other modules, which
need to be loaded first.

▶ Example: the usb-storage module depends on the scsi_mod,
libusual and usbcore modules.

▶ Dependencies are described both in
/lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin
These files are generated when you run
make modules_install.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/476

Kernel log

When a new module is loaded, related information is available in
the kernel log.

▶ The kernel keeps its messages in a circular buffer (so that it
doesn't consume more memory with many messages)

▶ Kernel log messages are available through the dmesg
command (diagnostic message)

▶ Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel
kernel parameter, or completely disabled with the quiet
parameter).

▶ Note that you can write to the kernel log from user space too:
echo "<n>Debug info" > /dev/kmsg

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/476

Module utilities (1)

▶ modinfo <module_name>
modinfo <module_path>.ko
Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

▶ sudo insmod <module_path>.ko
Tries to load the given module. The full path to the module
object file must be given.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 100/476

Understanding module loading issues

▶ When loading a module fails, insmod often doesn't give you
enough details!

▶ Details are often available in the kernel log.
▶ Example:

$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg
[17549774.552000] Failed to register handler for irq channel 2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 101/476

Module utilities (2)

▶ sudo modprobe <module_name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

▶ lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 102/476

Module utilities (3)

▶ sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

▶ sudo modprobe -r <module_name>
Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 103/476

Passing parameters to modules

▶ Find available parameters:
modinfo snd-intel8x0m

▶ Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

▶ Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

▶ Through the kernel command line, when the driver is built
statically into the kernel:
snd-intel8x0m.index=-2

▶ snd-intel8x0m is the driver name
▶ index is the driver parameter name
▶ -2 is the driver parameter value

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 104/476

Check module parameter values

How to find the current values for the parameters of a loaded
module?

▶ Check /sys/module/<name>/parameters.
▶ There is one file per parameter, containing the parameter

value.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 105/476

Useful reading

Linux Kernel in a Nutshell, Dec 2006
▶ By Greg Kroah-Hartman, O'Reilly

http://www.kroah.com/lkn/

▶ A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

▶ Freely available on-line!
Great companion to the printed book for
easy electronic searches!
Available as single PDF file on
http://free-
electrons.com/community/kernel/lkn/

▶ Our rating: 2 stars

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 106/476

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Developing Kernel Modules

Developing Kernel
Modules
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 107/476

Hello Module 1/2

/* hello.c */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int __init hello_init(void)
{

pr_alert("Good morrow to this fair assembly.\n");
return 0;

}

static void __exit hello_exit(void)
{

pr_alert("Alas, poor world, what treasure hast thou lost!\n");
}

module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Greeting module");
MODULE_AUTHOR("William Shakespeare");

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 108/476

Hello Module 2/2

▶ __init
▶ removed after initialization (static kernel or module.)

▶ __exit
▶ discarded when module compiled statically into the kernel, or

when module unloading support is not enabled.
▶ Example available on

http://git.free-electrons.com/training-
materials/plain/code/hello/hello.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 109/476

http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__exit
http://git.free-electrons.com/training-materials/plain/code/hello/hello.c
http://git.free-electrons.com/training-materials/plain/code/hello/hello.c

Hello Module Explanations

▶ Headers specific to the Linux kernel: linux/xxx.h
▶ No access to the usual C library, we're doing kernel

programming
▶ An initialization function

▶ Called when the module is loaded, returns an error code (0 on
success, negative value on failure)

▶ Declared by the module_init() macro: the name of the
function doesn't matter, even though <modulename>_init()
is a convention.

▶ A cleanup function
▶ Called when the module is unloaded
▶ Declared by the module_exit() macro.

▶ Metadata information declared using MODULE_LICENSE(),
MODULE_DESCRIPTION() and MODULE_AUTHOR()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 110/476

http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=MODULE_DESCRIPTION
http://lxr.free-electrons.com/ident?i=MODULE_AUTHOR

Symbols Exported to Modules 1/2

▶ From a kernel module, only a limited number of kernel
functions can be called

▶ Functions and variables have to be explicitly exported by the
kernel to be visible to a kernel module

▶ Two macros are used in the kernel to export functions and
variables:

▶ EXPORT_SYMBOL(symbolname), which exports a function or
variable to all modules

▶ EXPORT_SYMBOL_GPL(symbolname), which exports a function
or variable only to GPL modules

▶ A normal driver should not need any non-exported function.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 111/476

Symbols exported to modules 2/2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 112/476

Module License

▶ Several usages
▶ Used to restrict the kernel functions that the module can use if

it isn't a GPL licensed module
▶ Difference between EXPORT_SYMBOL() and

EXPORT_SYMBOL_GPL()

▶ Used by kernel developers to identify issues coming from
proprietary drivers, which they can't do anything about
(“Tainted” kernel notice in kernel crashes and oopses).

▶ Useful for users to check that their system is 100% free (check
/proc/sys/kernel/tainted)

▶ Values
▶ GPL compatible (see include/linux/license.h: GPL,

GPL v2, GPL and additional rights, Dual MIT/GPL,
Dual BSD/GPL, Dual MPL/GPL)

▶ Proprietary

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 113/476

http://lxr.free-electrons.com/ident?i=EXPORT_SYMBOL
http://lxr.free-electrons.com/ident?i=EXPORT_SYMBOL_GPL
http://lxr.free-electrons.com/source/include/linux/license.h

Compiling a Module

Two solutions
▶ Out of tree

▶ When the code is outside of the kernel source tree, in a
different directory

▶ Advantage: Might be easier to handle than modifications to
the kernel itself

▶ Drawbacks: Not integrated to the kernel
configuration/compilation process, needs to be built separately,
the driver cannot be built statically

▶ Inside the kernel tree
▶ Well integrated into the kernel configuration/compilation

process
▶ Driver can be built statically if needed

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 114/476

Compiling an out-of-tree Module 1/2

▶ The below Makefile should be reusable for any single-file
out-of-tree Linux module

▶ The source file is hello.c

▶ Just run make to build the hello.ko file
.

.

ifneq ($(KERNELRELEASE),)
obj-m := hello.o
else
KDIR := /path/to/kernel/sources

all:
<tab>$(MAKE) -C $(KDIR) M=$$PWD
endif

▶ KDIR: kernel source or headers directory (see next slides)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 115/476

Compiling an out-of-tree Module 2/2

▶ The module Makefile is interpreted with KERNELRELEASE
undefined, so it calls the kernel Makefile, passing the module
directory in the M variable

▶ The kernel Makefile knows how to compile a module, and
thanks to the M variable, knows where the Makefile for our
module is. This module Makefile is then interpreted with
KERNELRELEASE defined, so the kernel sees the obj-m
definition.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 116/476

Modules and Kernel Version

▶ To be compiled, a kernel module needs access to the kernel
headers, containing the definitions of functions, types and
constants.

▶ Two solutions
▶ Full kernel sources (configured + make modules_prepare)
▶ Only kernel headers (linux-headers-* packages in

Debian/Ubuntu distributions, or directory created by
make headers_install)

▶ The sources or headers must be configured
▶ Many macros or functions depend on the configuration

▶ A kernel module compiled against version X of kernel headers
will not load in kernel version Y

▶ modprobe / insmod will say Invalid module format

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 117/476

New Driver in Kernel Sources 1/2

▶ To add a new driver to the kernel sources:
▶ Add your new source file to the appropriate source directory.

Example: drivers/usb/serial/navman.c
▶ Single file drivers in the common case, even if the file is several

thousand lines of code big. Only really big drivers are split in
several files or have their own directory.

▶ Describe the configuration interface for your new driver by
adding the following lines to the Kconfig file in this directory:

.

.

config USB_SERIAL_NAVMAN
tristate "USB Navman GPS device"
depends on USB_SERIAL
help

To compile this driver as a module, choose M
here: the module will be called navman.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 118/476

http://lxr.free-electrons.com/source/drivers/usb/serial/navman.c

New Driver in Kernel Sources 2/2

▶ Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

▶ It tells the kernel build system to build navman.c when the
USB_SERIAL_NAVMAN option is enabled. It works both if
compiled statically or as a module.

▶ Run make xconfig and see your new options!
▶ Run make and your new files are compiled!
▶ See Documentation/kbuild/ for details and more elaborate

examples like drivers with several source files, or drivers in their
own subdirectory, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 119/476

http://free-electrons.com/kerneldoc/latest/kbuild/

Hello Module with Parameters 1/2

/* hello_param.c */
#include <linux/init.h>
#include <linux/module.h>

MODULE_LICENSE("GPL");

/* A couple of parameters that can be passed in: how many
times we say hello, and to whom */

static char *whom = "world";
module_param(whom, charp, 0);

static int howmany = 1;
module_param(howmany, int, 0);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 120/476

Hello Module with Parameters 2/2

static int __init hello_init(void)
{
int i;
for (i = 0; i < howmany; i++)

pr_alert("(%d) Hello, %s\n", i, whom);
return 0;

}

static void __exit hello_exit(void)
{
pr_alert("Goodbye, cruel %s\n", whom);

}

module_init(hello_init);
module_exit(hello_exit);

Thanks to Jonathan Corbet for the example!
Source code available on:
http://git.free-electrons.com/training-

materials/plain/code/hello-param/hello_param.c
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 121/476

http://git.free-electrons.com/training-materials/plain/code/hello-param/hello_param.c
http://git.free-electrons.com/training-materials/plain/code/hello-param/hello_param.c

Declaring a module parameter

module_param(
name, /* name of an already defined variable */
type, /* either byte, short, ushort, int, uint, long, ulong,

charp, bool or invbool. (checked at run time!) */
perm /* for /sys/module/<module_name>/parameters/<param>,

0: no such module parameter value file */
);

/* Example */
static int irq=5;
module_param(irq, int, S_IRUGO);

Modules parameter arrays are also possible with
module_param_array().

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 122/476

http://lxr.free-electrons.com/ident?i=module_param_array

Practical lab - Writing Modules

▶ Create, compile and load your first
module

▶ Add module parameters
▶ Access kernel internals from your

module

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 123/476

Useful general-purpose kernel APIs

Useful
general-purpose
kernel APIs
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 124/476

Memory/string utilities

▶ In include/linux/string.h
▶ Memory-related: memset(), memcpy(), memmove(), memscan(),

memcmp(), memchr()
▶ String-related: strcpy(), strcat(), strcmp(), strchr(),

strrchr(), strlen() and variants
▶ Allocate and copy a string: kstrdup(), kstrndup()
▶ Allocate and copy a memory area: kmemdup()

▶ In include/linux/kernel.h
▶ String to int conversion: simple_strtoul(),

simple_strtol(), simple_strtoull(), simple_strtoll()
▶ Other string functions: sprintf(), sscanf()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 125/476

http://lxr.free-electrons.com/source/include/linux/string.h
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=memcpy
http://lxr.free-electrons.com/ident?i=memmove
http://lxr.free-electrons.com/ident?i=memscan
http://lxr.free-electrons.com/ident?i=memcmp
http://lxr.free-electrons.com/ident?i=memchr
http://lxr.free-electrons.com/ident?i=strcpy
http://lxr.free-electrons.com/ident?i=strcat
http://lxr.free-electrons.com/ident?i=strcmp
http://lxr.free-electrons.com/ident?i=strchr
http://lxr.free-electrons.com/ident?i=strrchr
http://lxr.free-electrons.com/ident?i=strlen
http://lxr.free-electrons.com/ident?i=kstrdup
http://lxr.free-electrons.com/ident?i=kstrndup
http://lxr.free-electrons.com/ident?i=kmemdup
http://lxr.free-electrons.com/source/include/linux/kernel.h
http://lxr.free-electrons.com/ident?i=simple_strtoul
http://lxr.free-electrons.com/ident?i=simple_strtol
http://lxr.free-electrons.com/ident?i=simple_strtoull
http://lxr.free-electrons.com/ident?i=simple_strtoll
http://lxr.free-electrons.com/ident?i=sprintf
http://lxr.free-electrons.com/ident?i=sscanf

Linked lists

▶ Convenient linked-list facility in include/linux/list.h
▶ Used in thousands of places in the kernel

▶ Add a struct list_head member to the structure whose
instances will be part of the linked list. It is usually named
node when each instance needs to only be part of a single list.

▶ Define the list with the LIST_HEAD() macro for a global list,
or define a struct list_head element and initialize it with
INIT_LIST_HEAD() for lists embedded in a structure.

▶ Then use the list_*() API to manipulate the list
▶ Add elements: list_add(), list_add_tail()
▶ Remove, move or replace elements: list_del(),

list_move(), list_move_tail(), list_replace()
▶ Test the list: list_empty()
▶ Iterate over the list: list_for_each_*() family of macros

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 126/476

http://lxr.free-electrons.com/source/include/linux/list.h
http://lxr.free-electrons.com/ident?i=list_head
http://lxr.free-electrons.com/ident?i=LIST_HEAD
http://lxr.free-electrons.com/ident?i=list_head
http://lxr.free-electrons.com/ident?i=INIT_LIST_HEAD
http://lxr.free-electrons.com/ident?i=list_add
http://lxr.free-electrons.com/ident?i=list_add_tail
http://lxr.free-electrons.com/ident?i=list_del
http://lxr.free-electrons.com/ident?i=list_move
http://lxr.free-electrons.com/ident?i=list_move_tail
http://lxr.free-electrons.com/ident?i=list_replace
http://lxr.free-electrons.com/ident?i=list_empty

Linked Lists Examples (1)

▶ From include/linux/atmel_tc.h

/*
* Definition of a list element, with a
* struct list_head member
*/

struct atmel_tc
{

/* some members */
struct list_head node;

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 127/476

http://lxr.free-electrons.com/source/include/linux/atmel_tc.h

Linked Lists Examples (2)

▶ From drivers/misc/atmel_tclib.c

/* Define the global list */
static LIST_HEAD(tc_list);

static int __init tc_probe(struct platform_device *pdev) {
struct atmel_tc *tc;
tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL);
/* Add an element to the list */
list_add_tail(&tc->node, &tc_list);

}

struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name)
{

struct atmel_tc *tc;
/* Iterate over the list elements */
list_for_each_entry(tc, &tc_list, node) {

/* Do something with tc */
}
[...]

}
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 128/476

http://lxr.free-electrons.com/source/drivers/misc/atmel_tclib.c

Linux device and driver model

Linux device and
driver model
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 129/476

Linux device and driver model

Introduction

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 130/476

The need for a device model?

▶ The Linux kernel runs on a wide range of architectures and
hardware platforms, and therefore needs to maximize the
reusability of code between platforms.

▶ For example, we want the same USB device driver to be
usable on a x86 PC, or an ARM platform, even though the
USB controllers used on these platforms are different.

▶ This requires a clean organization of the code, with the device
drivers separated from the controller drivers, the hardware
description separated from the drivers themselves, etc.

▶ This is what the Linux kernel Device Model allows, in
addition to other advantages covered in this section.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 131/476

Kernel and Device Drivers

In Linux, a driver is always
interfacing with:

▶ a framework that allows the
driver to expose the
hardware features in a
generic way.

▶ a bus infrastructure, part
of the device model, to
detect/communicate with
the hardware.

This section focuses on the
device model, while kernel
frameworks are covered later in
this training.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 132/476

Device Model data structures

▶ The device model is organized around three main data
structures:

▶ The struct bus_type structure, which represent one type of
bus (USB, PCI, I2C, etc.)

▶ The struct device_driver structure, which represents one
driver capable of handling certain devices on a certain bus.

▶ The struct device structure, which represents one device
connected to a bus

▶ The kernel uses inheritance to create more specialized versions
of struct device_driver and struct device for each bus
subsystem.

▶ In order to explore the device model, we will
▶ First look at a popular bus that offers dynamic enumeration,

the USB bus
▶ Continue by studying how buses that do not offer dynamic

enumerations are handled.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 133/476

http://lxr.free-electrons.com/ident?i=bus_type
http://lxr.free-electrons.com/ident?i=device_driver
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device_driver
http://lxr.free-electrons.com/ident?i=device

Bus Drivers

▶ The first component of the device model is the bus driver
▶ One bus driver for each type of bus: USB, PCI, SPI, MMC,

I2C, etc.
▶ It is responsible for

▶ Registering the bus type (struct bus_type)
▶ Allowing the registration of adapter drivers (USB controllers,

I2C adapters, etc.), able to detect the connected devices, and
providing a communication mechanism with the devices

▶ Allowing the registration of device drivers (USB devices, I2C
devices, PCI devices, etc.), managing the devices

▶ Matching the device drivers against the devices detected by
the adapter drivers.

▶ Provides an API to both adapter drivers and device drivers
▶ Defining driver and device specific structures, mainly

struct usb_driver and struct usb_interface

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 134/476

http://lxr.free-electrons.com/ident?i=bus_type
http://lxr.free-electrons.com/ident?i=usb_driver
http://lxr.free-electrons.com/ident?i=usb_interface

Linux device and driver model

Example of the USB bus

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 135/476

Example: USB Bus 1/2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 136/476

Example: USB Bus 2/2

▶ Core infrastructure (bus driver)
▶ drivers/usb/core
▶ struct bus_type is defined in drivers/usb/core/driver.c

and registered in drivers/usb/core/usb.c

▶ Adapter drivers
▶ drivers/usb/host
▶ For EHCI, UHCI, OHCI, XHCI, and their implementations on

various systems (Atmel, IXP, Xilinx, OMAP, Samsung, PXA,
etc.)

▶ Device drivers
▶ Everywhere in the kernel tree, classified by their type

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 137/476

http://lxr.free-electrons.com/source/drivers/usb/core
http://lxr.free-electrons.com/ident?i=bus_type
http://lxr.free-electrons.com/source/drivers/usb/core/driver.c
http://lxr.free-electrons.com/source/drivers/usb/core/usb.c
http://lxr.free-electrons.com/source/drivers/usb/host

Example of Device Driver

▶ To illustrate how drivers are implemented to work with the
device model, we will study the source code of a driver for a
USB network card

▶ It is USB device, so it has to be a USB device driver
▶ It is a network device, so it has to be a network driver
▶ Most drivers rely on a bus infrastructure (here, USB) and

register themselves in a framework (here, network)
▶ We will only look at the device driver side, and not the

adapter driver side
▶ The driver we will look at is drivers/net/usb/rtl8150.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 138/476

http://lxr.free-electrons.com/source/drivers/net/usb/rtl8150.c

Device Identifiers

▶ Defines the set of devices that this driver can manage, so that
the USB core knows for which devices this driver should be
used

▶ The MODULE_DEVICE_TABLE() macro allows depmod to extract
at compile time the relation between device identifiers and
drivers, so that drivers can be loaded automatically by udev.
See /lib/modules/$(uname -r)/modules.{alias,usbmap}

.

.

static struct usb_device_id rtl8150_table[] = {
{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },
{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },
{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },
{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },
[...]
{}

};
MODULE_DEVICE_TABLE(usb, rtl8150_table);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 139/476

http://lxr.free-electrons.com/ident?i=MODULE_DEVICE_TABLE

Instantiation of usb_driver

▶ struct usb_driver is a structure defined by the USB core.
Each USB device driver must instantiate it, and register itself
to the USB core using this structure

▶ This structure inherits from struct device_driver, which is
defined by the device model.

.

.

static struct usb_driver rtl8150_driver = {
.name = "rtl8150",
.probe = rtl8150_probe,
.disconnect = rtl8150_disconnect,
.id_table = rtl8150_table,
.suspend = rtl8150_suspend,
.resume = rtl8150_resume

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 140/476

http://lxr.free-electrons.com/ident?i=usb_driver
http://lxr.free-electrons.com/ident?i=device_driver

Driver (Un)Registration

▶ When the driver is loaded or unloaded, it must register or
unregister itself from the USB core

▶ Done using usb_register() and usb_deregister(),
provided by the USB core.

.

.

static int __init usb_rtl8150_init(void)
{

return usb_register(&rtl8150_driver);
}

static void __exit usb_rtl8150_exit(void)
{

usb_deregister(&rtl8150_driver);
}

module_init(usb_rtl8150_init);
module_exit(usb_rtl8150_exit);

▶ Note: this code has now been replaced by a shorter
module_usb_driver() macro call.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 141/476

http://lxr.free-electrons.com/ident?i=usb_register
http://lxr.free-electrons.com/ident?i=usb_deregister
http://lxr.free-electrons.com/ident?i=module_usb_driver

At Initialization

▶ The USB adapter driver that corresponds to the USB
controller of the system registers itself to the USB core

▶ The rtl8150 USB device driver registers itself to the USB
core

▶ The USB core now knows the association between the
vendor/product IDs of rtl8150 and the struct usb_driver
structure of this driver

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 142/476

http://lxr.free-electrons.com/ident?i=rtl8150
http://lxr.free-electrons.com/ident?i=rtl8150
http://lxr.free-electrons.com/ident?i=usb_driver

When a Device is Detected

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 143/476

Probe Method

▶ The probe() method receives as argument a structure
describing the device, usually specialized by the bus
infrastructure (struct pci_dev, struct usb_interface,
etc.)

▶ This function is responsible for
▶ Initializing the device, mapping I/O memory, registering the

interrupt handlers. The bus infrastructure provides methods to
get the addresses, interrupt numbers and other device-specific
information.

▶ Registering the device to the proper kernel framework, for
example the network infrastructure.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 144/476

http://lxr.free-electrons.com/ident?i=pci_dev
http://lxr.free-electrons.com/ident?i=usb_interface

Probe Method Example

.

.

static int rtl8150_probe(struct usb_interface *intf,
const struct usb_device_id *id)

{
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
[...]
dev = netdev_priv(netdev);
tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);
spin_lock_init(&dev->rx_pool_lock);
[...]
netdev->netdev_ops = &rtl8150_netdev_ops;
alloc_all_urbs(dev);
[...]
usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);
register_netdev(netdev);

return 0;
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 145/476

The Model is Recursive

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 146/476

Linux device and driver model

Platform drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 147/476

Non-discoverable buses

▶ On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

▶ For example, the devices on I2C buses or SPI buses, or the
devices directly part of the system-on-chip.

▶ However, we still want all of these devices to be part of the
device model.

▶ Such devices, instead of being dynamically detected, must be
statically described in either:

▶ The kernel source code
▶ The Device Tree, a hardware description file used on some

architectures.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 148/476

Platform devices

▶ Amongst the non-discoverable devices, a huge family are the
devices that are directly part of a system-on-chip: UART
controllers, Ethernet controllers, SPI or I2C controllers,
graphic or audio devices, etc.

▶ In the Linux kernel, a special bus, called the platform bus has
been created to handle such devices.

▶ It supports platform drivers that handle platform devices.
▶ It works like any other bus (USB, PCI), except that devices are

enumerated statically instead of being discovered dynamically.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 149/476

Implementation of a Platform Driver

▶ The driver implements a struct platform_driver structure
(example taken from drivers/tty/serial/imx.c, simplified)

.

.

static struct platform_driver serial_imx_driver = {
.probe = serial_imx_probe,
.remove = serial_imx_remove,
.id_table = imx_uart_devtype,
.driver = {

.name = "imx-uart",

.of_match_table = imx_uart_dt_ids,

.pm = &imx_serial_port_pm_ops,
},

};

▶ And registers its driver to the platform driver infrastructure
.

.

static int __init imx_serial_init(void) {
ret = platform_driver_register(&serial_imx_driver);

}

static void __exit imx_serial_cleanup(void) {
platform_driver_unregister(&serial_imx_driver);

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 150/476

http://lxr.free-electrons.com/ident?i=platform_driver
http://lxr.free-electrons.com/source/drivers/tty/serial/imx.c

Platform Device Instantiation: old style (1/2)
▶ As platform devices cannot be detected dynamically, they are

defined statically
▶ By direct instantiation of struct platform_device

structures, as done on a few old ARM platforms. Definition
done in the board-specific or SoC specific code.

▶ By using a device tree, as done on Power PC (and on most
ARM platforms) from which struct platform_device
structures are created

▶ Example on ARM, where the instantiation was done in
arch/arm/mach-imx/mx1ads.c

.

.

static struct platform_device imx_uart1_device = {
.name = "imx-uart",
.id = 0,
.num_resources = ARRAY_SIZE(imx_uart1_resources),
.resource = imx_uart1_resources,
.dev = {

.platform_data = &uart_pdata,
}

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 151/476

http://lxr.free-electrons.com/ident?i=platform_device
http://lxr.free-electrons.com/ident?i=platform_device
http://lxr.free-electrons.com/source/arch/arm/mach-imx/mx1ads.c?v=2.6.30

Platform device instantiation: old style (2/2)

▶ The device was part of a list
.

.

static struct platform_device *devices[] __initdata = {
&cs89x0_device,
&imx_uart1_device,
&imx_uart2_device,

};

▶ And the list of devices was added to the system during board
initialization

.

.

static void __init mx1ads_init(void)
{

[...]
platform_add_devices(devices, ARRAY_SIZE(devices));

}

MACHINE_START(MX1ADS, "Freescale MX1ADS")
[...]
.init_machine = mx1ads_init,

MACHINE_END

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 152/476

The Resource Mechanism

▶ Each device managed by a particular driver typically uses
different hardware resources: addresses for the I/O registers,
DMA channels, IRQ lines, etc.

▶ Such information can be represented using struct resource,
and an array of struct resource is associated to a
struct platform_device

▶ Allows a driver to be instantiated for multiple devices
functioning similarly, but with different addresses, IRQs, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 153/476

http://lxr.free-electrons.com/ident?i=resource
http://lxr.free-electrons.com/ident?i=resource
http://lxr.free-electrons.com/ident?i=platform_device

Declaring resources (old style)

.

.

static struct resource imx_uart1_resources[] = {
[0] = {

.start = 0x00206000,

.end = 0x002060FF,

.flags = IORESOURCE_MEM,
},
[1] = {

.start = (UART1_MINT_RX),

.end = (UART1_MINT_RX),

.flags = IORESOURCE_IRQ,
},

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 154/476

Using Resources (old style)

▶ When a struct platform_device was added to the system
using platform_add_device(), the probe() method of the
platform driver was called

▶ This method is responsible for initializing the hardware,
registering the device to the proper framework (in our case,
the serial driver framework)

▶ The platform driver has access to the I/O resources:
.

.

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = ioremap(res->start, PAGE_SIZE);
sport->rxirq = platform_get_irq(pdev, 0);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 155/476

http://lxr.free-electrons.com/ident?i=platform_device
http://lxr.free-electrons.com/ident?i=platform_add_device

platform_data Mechanism (old style)

▶ In addition to the well-defined resources, many drivers require
driver-specific information for each platform device

▶ Such information could be passed using the platform_data
field of struct device (from which
struct platform_device inherits)

▶ As it is a void * pointer, it could be used to pass any type of
information.

▶ Typically, each driver defines a structure to pass information
through struct platform_data

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 156/476

http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=platform_device
http://lxr.free-electrons.com/ident?i=platform_data

platform_data example 1/2

▶ The i.MX serial port driver defines the following structure to
be passed through struct platform_data

.

.

struct imxuart_platform_data {
int (*init)(struct platform_device *pdev);
void (*exit)(struct platform_device *pdev);
unsigned int flags;
void (*irda_enable)(int enable);
unsigned int irda_inv_rx:1;
unsigned int irda_inv_tx:1;
unsigned short transceiver_delay;

};

▶ The MX1ADS board code instantiated such a structure
.

.

static struct imxuart_platform_data uart1_pdata = {
.flags = IMXUART_HAVE_RTSCTS,

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 157/476

http://lxr.free-electrons.com/ident?i=platform_data

platform_data Example 2/2

▶ The uart_pdata structure was associated to the
struct platform_device structure in the MX1ADS board
file (the real code was slightly more complicated)

.

.

struct platform_device mx1ads_uart1 = {
.name = "imx-uart",
.dev {

.platform_data = &uart1_pdata,
},
.resource = imx_uart1_resources,
[...]

};

▶ The driver can access the platform data:
.

.

static int serial_imx_probe(struct platform_device *pdev)
{

struct imxuart_platform_data *pdata;
pdata = pdev->dev.platform_data;
if (pdata && (pdata->flags & IMXUART_HAVE_RTSCTS))

sport->have_rtscts = 1;
[...]

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 158/476

http://lxr.free-electrons.com/ident?i=platform_device

Device Tree

▶ On many embedded architectures, manual instantiation of
platform devices was considered to be too verbose and not
easily maintainable.

▶ Such architectures are moving, or have moved, to use the
Device Tree.

▶ It is a tree of nodes that models the hierarchy of devices in
the system, from the devices inside the processor to the
devices on the board.

▶ Each node can have a number of properties describing various
properties of the devices: addresses, interrupts, clocks, etc.

▶ At boot time, the kernel is given a compiled version, the
Device Tree Blob, which is parsed to instantiate all the
devices described in the DT.

▶ On ARM, they are located in arch/arm/boot/dts.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 159/476

http://lxr.free-electrons.com/source/arch/arm/boot/dts

Device Tree example

.

.

uart0: serial@44e09000 {
compatible = "ti,omap3-uart";
ti,hwmods = "uart1";
clock-frequency = <48000000>;
reg = <0x44e09000 0x2000>;
interrupts = <72>;
status = "disabled";

};

▶ serial@44e09000 is the node name
▶ uart0 is an alias, that can be referred to in other parts of the

DT as &uart0

▶ other lines are properties. Their values are usually strings, list
of integers, or references to other nodes.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 160/476

Device Tree inheritance (1/2)

▶ Each particular hardware platform has its own device tree.
▶ However, several hardware platforms use the same processor,

and often various processors in the same family share a
number of similarities.

▶ To allow this, a device tree file can include another one. The
trees described by the including file overlays the tree described
by the included file. This can be done:

▶ Either by using the /include/ statement provided by the
Device Tree language.

▶ Either by using the #include statement, which requires calling
the C preprocessor before parsing the Device Tree.

Linux currently uses either one technique or the other,
(different from one ARM subarchitecture to another, for
example).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 161/476

Device Tree inheritance (2/2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 162/476

Device Tree: compatible string

▶ With the device tree, a device is bound with the
corresponding driver using the compatible string.

▶ The of_match_table field of struct device_driver lists the
compatible strings supported by the driver.

.

.

#if defined(CONFIG_OF)
static const struct of_device_id omap_serial_of_match[] = {

{ .compatible = "ti,omap2-uart" },
{ .compatible = "ti,omap3-uart" },
{ .compatible = "ti,omap4-uart" },
{},

};
MODULE_DEVICE_TABLE(of, omap_serial_of_match);
#endif
static struct platform_driver serial_omap_driver = {

.probe = serial_omap_probe,

.remove = serial_omap_remove,

.driver = {
.name = DRIVER_NAME,
.pm = &serial_omap_dev_pm_ops,
.of_match_table = of_match_ptr(omap_serial_of_match),

},
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 163/476

http://lxr.free-electrons.com/ident?i=device_driver

Device Tree Resources

▶ The drivers will use the same mechanism that we saw
previously to retrieve basic information: interrupts numbers,
physical addresses, etc.

▶ The available resources list will be built up by the kernel at
boot time from the device tree, so that you don't need to
make any unnecessary lookups to the DT when loading your
driver.

▶ Any additional information will be specific to a driver or the
class it belongs to, defining the bindings

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 164/476

Device Tree bindings

▶ The compatible string and the associated properties define
what is called a device tree binding.

▶ Device tree bindings are all documented in
Documentation/devicetree/bindings .

▶ Since the Device Tree is normally part of the kernel ABI, the
bindings must remain compatible over-time.

▶ A new kernel must be capable of using an old Device Tree.
▶ This requires a very careful design of the bindings. They are all

reviewed on the devicetree@vger.kernel.org mailing list.
▶ A Device Tree binding should contain only a description of the

hardware and not configuration.
▶ An interrupt number can be part of the Device Tree as it

describes the hardware.
▶ But not whether DMA should be used for a device or not, as it

is a configuration choice.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 165/476

http://free-electrons.com/kerneldoc/latest/devicetree/bindings

sysfs

▶ The bus, device, drivers, etc. structures are internal to the
kernel

▶ The sysfs virtual filesystem offers a mechanism to export
such information to user space

▶ Used for example by udev to provide automatic module
loading, firmware loading, device file creation, etc.

▶ sysfs is usually mounted in /sys
▶ /sys/bus/ contains the list of buses
▶ /sys/devices/ contains the list of devices
▶ /sys/class enumerates devices by class (net, input,

block...), whatever the bus they are connected to. Very useful!
▶ Take your time to explore /sys on your workstation.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 166/476

References

▶ Device Tree for Dummies,
Thomas Petazzoni (Apr.
2014):
http://j.mp/1jQU6NR

▶ Kernel documentation
▶ Documentation/driver-

model/
▶ Documentation/

devicetree/
▶ Documentation/

filesystems/sysfs.txt

▶ http://devicetree.org
▶ The kernel source code

▶ Full of examples of other
drivers!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 167/476

http://j.mp/1jQU6NR
http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/devicetree/
http://free-electrons.com/kerneldoc/latest/devicetree/
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt
http://devicetree.org

Introduction to the I2C subsystem

Introduction to
the I2C subsystem
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 168/476

What is I2C?

▶ A very commonly used low-speed bus to connect on-board
and external devices to the processor.

▶ Uses only two wires: SDA for the data, SCL for the clock.
▶ It is a master/slave bus: only the master can initiate

transactions, and slaves can only reply to transactions
initiated by masters.

▶ In a Linux system, the I2C controller embedded in the
processor is typically the master, controlling the bus.

▶ Each slave device is identified by a unique I2C address. Each
transaction initiated by the master contains this address,
which allows the relevant slave to recognize that it should
reply to this particular transaction.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 169/476

An I2C bus example

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 170/476

The I2C subsystem

▶ Like all bus subsystems, the I2C subsystem is responsible for:
▶ Providing an API to implement I2C controller drivers
▶ Providing an API to implement I2C device drivers, in kernel

space
▶ Providing an API to implement I2C device drivers, in user

space
▶ The core of the I2C subsystem is located in drivers/i2c.
▶ The I2C controller drivers are located in drivers/i2c/busses.
▶ The I2C device drivers are located throughout drivers/,

depending on the type of device (ex: drivers/input for input
devices).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 171/476

http://lxr.free-electrons.com/source/drivers/i2c
http://lxr.free-electrons.com/source/drivers/i2c/busses
http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/drivers/input

Registering an I2C device driver

▶ Like all bus subsystems, the I2C subsystem defines a
struct i2c_driver that inherits from
struct device_driver, and which must be instantiated and
registered by each I2C device driver.

▶ As usual, this structure points to the ->probe() and
->remove() functions.

▶ It also contains an id_table field that must point to a list of
device IDs (which is a list of tuples containing a string and
some private driver data). It is used for non-DT based probing
of I2C devices.

▶ The i2c_add_driver() and i2c_del_driver() functions are
used to register/unregister the driver.

▶ If the driver doesn't do anything else in its init()/exit()
functions, it is advised to use the module_i2c_driver()
macro instead.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 172/476

http://lxr.free-electrons.com/ident?i=i2c_driver
http://lxr.free-electrons.com/ident?i=device_driver
http://lxr.free-electrons.com/ident?i=i2c_add_driver
http://lxr.free-electrons.com/ident?i=i2c_del_driver
http://lxr.free-electrons.com/ident?i=module_i2c_driver

Registering an I2C device driver: example

.

.

static const struct i2c_device_id <driver>_id[] = {
{ "<device-name>", 0 },
{ }

};
MODULE_DEVICE_TABLE(i2c, <driver>_id);

#ifdef CONFIG_OF
static const struct of_device_id <driver>_dt_ids[] = {

{ .compatible = "<vendor>,<device-name>", },
{ }

};
MODULE_DEVICE_TABLE(of, <driver>_dt_ids);
#endif

static struct i2c_driver <driver>_driver = {
.probe = <driver>_probe,
.remove = <driver>_remove,
.id_table = <driver>_id,
.driver = {

.name = "<driver-name>",

.owner = THIS_MODULE,

.of_match_table = of_match_ptr(<driver>_dt_ids),
},

};

module_i2c_driver(<driver>_driver);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 173/476

Registering an I2C device: non-DT

▶ On non-DT platforms, the struct i2c_board_info structure
allows to describe how an I2C device is connected to a board.

▶ Such structures are normally defined with the
I2C_BOARD_INFO() helper macro.

▶ Takes as argument the device name and the slave address of
the device on the bus.

▶ An array of such structures is registed on a per-bus basis using
i2c_register_board_info(), when the platform is
initialized.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 174/476

http://lxr.free-electrons.com/ident?i=i2c_board_info
http://lxr.free-electrons.com/ident?i=I2C_BOARD_INFO
http://lxr.free-electrons.com/ident?i=i2c_register_board_info

Registering an I2C device, non-DT example

.

.

static struct i2c_board_info <board>_i2c_devices[] __initdata = {
{

I2C_BOARD_INFO("cs42l51", 0x4a),
},

};

void board_init(void)
{

/*
* Here should be the registration of all devices, including
* the I2C controller device.
*/

i2c_register_board_info(0, <board>_i2c_devices,
ARRAY_SIZE(<board>_i2c_devices));

/* More devices registered here */
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 175/476

Registering an I2C device, in the DT

▶ In the Device Tree, the I2C controller device is typically
defined in the .dtsi file that describes the processor.

▶ Normally defined with status = "disabled".
▶ At the board/platform level:

▶ the I2C controller device is enabled (status = "okay")
▶ the I2C bus frequency is defined, using the clock-frequency

property.
▶ the I2C devices on the bus are described as children of the I2C

controller node, where the reg property gives the I2C slave
address on the bus.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 176/476

Registering an I2C device, DT example (1/2)

.Definition of the I2C controller, sun7i-a20.dtsi file..

.

i2c0: i2c@01c2ac00 {
compatible = "allwinner,sun7i-a20-i2c",

"allwinner,sun4i-a10-i2c";
reg = <0x01c2ac00 0x400>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&apb1_gates 0>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 177/476

Registering an I2C device, DT example (2/2)

.Definition of the I2C device, sun7i-a20-bananapi.dts file..

.

&i2c0 {
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins_a>;
status = "okay";

axp209: pmic@34 {
reg = <0x34>;
interrupt-parent = <&nmi_intc>;
interrupts = <0 IRQ_TYPE_LEVEL_LOW>;

};
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 178/476

probe() and remove()

▶ The ->probe() function is responsible for initializing the
device and registering it in the appropriate kernel framework.
It receives as argument:

▶ A struct i2c_client pointer, which represents the I2C
device itself. This structure inherits from struct device.

▶ A struct i2c_device_id pointer, which points to the I2C
device ID entry that matched the device that is being probed.

▶ The ->remove() function is responsible for unregistering the
device from the kernel framework and shut it down. It receives
as argument:

▶ The same struct i2c_client pointer that was passed as
argument to ->probe()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 179/476

http://lxr.free-electrons.com/ident?i=i2c_client
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=i2c_device_id
http://lxr.free-electrons.com/ident?i=i2c_client

Probe/remove example

.

.

static int <driver>_probe(struct i2c_client *client,
const struct i2c_device_id *id)

{
/* initialize device */
/* register to a kernel framework */

i2c_set_clientdata(client, <private data>);
return 0;

}

static int <driver>_remove(struct i2c_client *client)
{

<private data> = i2c_get_clientdata(client);
/* unregister device from kernel framework */
/* shut down the device */
return 0;

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 180/476

Practical lab - Linux device model for an I2C driver

▶ Modify the Device Tree to
instantiate an I2C device.

▶ Implement a driver that registers as
an I2C driver.

▶ Make sure that the probe/remove
functions are called when there is a
device/driver match.

▶ Explore the sysfs entries related to
your driver and device.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 181/476

Communicating with the I2C device: raw API

The most basic API to communicate with the I2C device provides
functions to either send or receive data:

▶ int i2c_master_send(struct i2c_client *client, const
char *buf, int count);
Sends the contents of buf to the client.

▶ int i2c_master_recv(struct i2c_client *client, char
*buf, int count);
Receives count bytes from the client, and store them into buf.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 182/476

Communicating with the I2C device: message transfer

The message transfer API allows to describe transfers that
consists of several messages, with each message being a
transaction in one direction:

▶ int i2c_transfer(struct i2c_adapter *adap, struct
i2c_msg *msg, int num);

▶ The struct i2c_adapter pointer can be found by using
client->adapter

▶ The struct i2c_msg structure defines the length, location,
and direction of the message.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 183/476

http://lxr.free-electrons.com/ident?i=i2c_adapter
http://lxr.free-electrons.com/ident?i=i2c_msg

I2C: message transfer example

.

.

struct i2c_msg msg[2];
int error;
u8 start_reg;
u8 buf[10];

msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &start_reg;
start_reg = 0x10;

msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = sizeof(buf);
msg[1].buf = buf;

error = i2c_transfer(client->adapter, msg, 2);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 184/476

SMBus calls

▶ SMBus is a subset of the I2C protocol.
▶ It defines a standard set of transactions, for example to read

or write a register into a device.
▶ Linux provides SMBus functions that should be used instead

of the raw API, if the I2C device supports this standard type of
transactions. The driver can then be used on both SMBus and
I2C adapters (can't use I2C commands on SMBus adapters).

▶ Example: the i2c_smbus_read_byte_data() function allows
to read one byte of data from a device register.

▶ It does the following operations:
S Addr Wr [A] Comm [A] S Addr Rd [A] [Data] NA P

▶ Which means it first writes a one byte data command
(Comm), and then reads back one byte of data ([Data]).

▶ See Documentation/i2c/smbus-protocol for details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 185/476

http://lxr.free-electrons.com/ident?i=i2c_smbus_read_byte_data
http://free-electrons.com/kerneldoc/latest/i2c/smbus-protocol

List of SMBus functions

▶ Read/write one byte
▶ s32 i2c_smbus_read_byte(const struct i2c_client *client);
▶ s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value);

▶ Write a command byte, and read or write one byte
▶ s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command);
▶ s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command, u8 value);

▶ Write a command byte, and read or write one word
▶ s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command);
▶ s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command, u16 value);

▶ Write a command byte, and read or write a block of data
(max 32 bytes)

▶ s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command, u8 *values);
▶ s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command, u8 length,

const u8 *values);

▶ Write a command byte, and read or write a block of data (no
limit)

▶ s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command, u8
length, u8 *values);

▶ s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command, u8
length, const u8 *values);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 186/476

I2C functionality

▶ Not all I2C controllers support all functionalities.
▶ The I2C controller drivers therefore tell the I2C core which

functionalities they support.
▶ An I2C device driver must check that the functionalities they

need are provided by the I2C controller in use on the system.
▶ The i2c_check_functionality() function allows to make

such a check.
▶ Examples of functionalities: I2C_FUNC_I2C to be able to use

the raw I2C functions, I2C_FUNC_SMBUS_BYTE_DATA to be able
to use SMBus commands to write a command and read/write
one byte of data.

▶ See include/uapi/linux/i2c.h for the full list of existing
functionalities.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 187/476

http://lxr.free-electrons.com/ident?i=i2c_check_functionality
http://lxr.free-electrons.com/ident?i=I2C_FUNC_I2C
http://lxr.free-electrons.com/ident?i=I2C_FUNC_SMBUS_BYTE_DATA
http://lxr.free-electrons.com/source/include/uapi/linux/i2c.h

References

▶ http://en.wikipedia.org/wiki/I2C, general presentation
of the I2C protocol

▶ Documentation/i2c/ , details about the Linux support for
I2C

▶ writing-clients, how to write I2C device drivers
▶ instantiating-devices, how to instantiate devices
▶ smbus-protocol, details on the SMBus functions
▶ functionality, how the functionality mechanism works
▶ and many more documentation files

▶ http://free-electrons.com/pub/video/2012/elce/elce-
2012-anders-board-bringup-i2c.webm, excellent talk: You,
me and I2C from David Anders at ELCE 2012.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 188/476

http://en.wikipedia.org/wiki/I2C
http://free-electrons.com/kerneldoc/latest/i2c/
http://free-electrons.com/pub/video/2012/elce/elce-2012-anders-board-bringup-i2c.webm
http://free-electrons.com/pub/video/2012/elce/elce-2012-anders-board-bringup-i2c.webm

Introduction to pin muxing

Introduction to pin
muxing
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 189/476

What is pin muxing?

▶ Modern SoCs (System on Chip) include more and more
hardware blocks, many of which need to interface with the
outside world using pins.

▶ However, the physical size of the chips remains small, and
therefore the number of available pins is limited.

▶ For this reason, not all of the internal hardware block features
can be exposed on the pins simultaneously.

▶ The pins are multiplexed: they expose either the functionality
of hardware block A or the functionality of hardware block B.

▶ This multiplexing is usually software configurable.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 190/476

Pin muxing diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 191/476

Pin muxing in the Linux kernel

▶ Since Linux 3.2, a pinctrl subsystem has been added.
▶ This subsystem, located in drivers/pinctrl provides a

generic subsystem to handle pin muxing. It offers:
▶ A pin muxing driver interface, to implement the

system-on-chip specific drivers that configure the muxing.
▶ A pin muxing consumer interface, for device drivers.

▶ Most pinctrl drivers provide a Device Tree binding, and the
pin muxing must be described in the Device Tree.

▶ The exact Device Tree binding depends on each driver. Each
binding is documented in
Documentation/devicetree/bindings/pinctrl .

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 192/476

http://lxr.free-electrons.com/source/drivers/pinctrl
http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl

pinctrl subsystem diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 193/476

Device Tree binding for consumer devices

▶ The devices that require certains pins to be muxed will use
the pinctrl-<x> and pinctrl-names Device Tree properties.

▶ The pinctrl-0, pinctrl-1, pinctrl-<x> properties link to a
pin configuration for a given state of the device.

▶ The pinctrl-names property associates a name to each state.
The name default is special, and is automatically selected by
a device driver, without having to make an explicit pinctrl
function call.

▶ In most cases, the following is sufficient:
i2c@11000 {

pinctrl-0 = <&pmx_twsi0>;
pinctrl-names = "default";
...

};

▶ See
Documentation/devicetree/bindings/pinctrl/pinctrl-
bindings.txt for details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 194/476

http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl/pinctrl-bindings.txt
http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl/pinctrl-bindings.txt

Defining pinctrl configurations

▶ The different pinctrl configurations must be defined as child
nodes of the main pinctrl device (which controls the muxing
of pins).

▶ The configurations may be defined at:
▶ the SoC level (.dtsi file), for pin configurations that are often

shared between multiple boards
▶ at the board level (.dts file) for configurations that are board

specific.
▶ The pinctrl-<x> property of the consumer device points to

the pin configuration it needs through a DT phandle.
▶ The description of the configurations is specific to each pinctrl

driver. See Documentation/devicetree/bindings/pinctrl
for the DT bindings documentation.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 195/476

http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl

Example on OMAP/AM33xx

▶ On OMAP/AM33xx, the
pinctrl-single driver is used.
It is common between multiple
SoCs and simply allows to
configure pins by writing a
value to a register.

▶ In each pin configuration,
a pinctrl-single,pins
value gives a list of
(register, value) pairs
needed to configure the
pins.

▶ To know the correct values,
one must use the SoC and
board datasheets.

am33xx_pinmux: pinmux@44e10800 {
i2c0_pins: pinmux_i2c0_pins {

pinctrl-single,pins = <
/* i2c0_sda.i2c0_sda */
0x188 (PIN_INPUT_PULLUP | MUX_MODE0)
/* i2c0_scl.i2c0_scl */
0x18c (PIN_INPUT_PULLUP | MUX_MODE0)

>;
};

};

i2c0: i2c@44e0b000 {
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins>;

status = "okay";
clock-frequency = <400000>;

tps: tps@2d {
reg = <0x2d>;

};
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 196/476

Example on Allwinner SoC

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 197/476

Practical lab - Communicate with the Nunchuk

▶ Configure the pinmuxing for the
I2C bus used to communicate with
the Nunchuk

▶ Validate that the I2C
communication works with user
space tools.

▶ Extend the I2C driver started in the
previous lab to communicate with
the Nunchuk.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 198/476

Kernel frameworks for device drivers

Kernel frameworks
for device drivers
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 199/476

Kernel and Device Drivers

In Linux, a driver is always
interfacing with:

▶ a framework that allows the
driver to expose the
hardware features to user
space applications.

▶ a bus infrastructure, part
of the device model, to
detect/communicate with
the hardware.

This section focuses on the
kernel frameworks, while the
device model was covered earlier
in this training.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 200/476

Kernel frameworks for device drivers

User space vision of devices

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 201/476

Types of devices

Under Linux, there are essentially three types of devices:
▶ Network devices. They are represented as network

interfaces, visible in user space using ifconfig.
▶ Block devices. They are used to provide user space

applications access to raw storage devices (hard disks, USB
keys). They are visible to the applications as device files in
/dev.

▶ Character devices. They are used to provide user space
applications access to all other types of devices (input, sound,
graphics, serial, etc.). They are also visible to the applications
as device files in /dev.

→ Most devices are character devices, so we will study these in
more details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 202/476

Major and minor numbers

▶ Within the kernel, all block and character devices are
identified using a major and a minor number.

▶ The major number typically indicates the family of the device.
▶ The minor number typically indicates the number of the

device (when there are for example several serial ports)
▶ Most major and minor numbers are statically allocated, and

identical across all Linux systems.
▶ They are defined in Documentation/devices.txt .

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 203/476

http://free-electrons.com/kerneldoc/latest/devices.txt

Devices: everything is a file

▶ A very important Unix design decision was to represent most
system objects as files

▶ It allows applications to manipulate all system objects with
the normal file API (open, read, write, close, etc.)

▶ So, devices had to be represented as files to the applications
▶ This is done through a special artifact called a device file
▶ It is a special type of file, that associates a file name visible to

user space applications to the triplet (type, major, minor) that
the kernel understands

▶ All device files are by convention stored in the /dev directory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 204/476

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda1 /dev/sda2 /dev/zero
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a
serial port

int fd;
fd = open("/dev/ttyS0", O_RDWR);
write(fd, "Hello", 5);
close(fd);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 205/476

Creating device files

▶ Before Linux 2.6.32, on basic Linux systems, the device files
had to be created manually using the mknod command

▶ mknod /dev/<device> [c|b] major minor
▶ Needed root privileges
▶ Coherency between device files and devices handled by the

kernel was left to the system developer
▶ The devtmpfs virtual filesystem can be mounted on /dev and

contains all the devices known to the kernel. The
CONFIG_DEVTMPFS_MOUNT kernel configuration option makes
the kernel mount it automatically at boot time, except when
booting on an initramfs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 206/476

Kernel frameworks for device drivers

Character drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 207/476

A character driver in the kernel

▶ From the point of view of an application, a character device is
essentially a file.

▶ The driver of a character device must therefore implement
operations that let applications think the device is a file:
open, close, read, write, etc.

▶ In order to achieve this, a character driver must implement
the operations described in the struct file_operations
structure and register them.

▶ The Linux filesystem layer will ensure that the driver's
operations are called when a user space application makes the
corresponding system call.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 208/476

http://lxr.free-electrons.com/ident?i=file_operations

From user space to the kernel: character devices

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 209/476

File operations

▶ Here are the most important operations for a character driver.
All of them are optional.

#include <linux/fs.h>

struct file_operations {
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);
long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 210/476

open() and release()

▶ int foo_open(struct inode *i, struct file *f)

▶ Called when user space opens the device file.
▶ struct inode is a structure that uniquely represents a file in

the system (be it a regular file, a directory, a symbolic link, a
character or block device)

▶ struct file is a structure created every time a file is opened.
Several file structures can point to the same inode structure.

▶ Contains information like the current position, the opening
mode, etc.

▶ Has a void *private_data pointer that one can freely use.
▶ A pointer to the file structure is passed to all other

operations

▶ int foo_release(struct inode *i, struct file *f)

▶ Called when user space closes the file.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 211/476

http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=file

read()

▶ ssize_t foo_read(struct file *f, char __user *buf,

size_t sz, loff_t *off)

▶ Called when user space uses the read() system call on the
device.

▶ Must read data from the device, write at most sz bytes in the
user space buffer buf, and update the current position in the
file off. f is a pointer to the same file structure that was
passed in the open() operation

▶ Must return the number of bytes read.
0 is usually interpreted by userspace as the end of the file.

▶ On UNIX, read() operations typically block when there isn't
enough data to read from the device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 212/476

write()

▶ ssize_t foo_write(struct file *f,

const char __user *buf, size_t sz, loff_t *off)

▶ Called when user space uses the write() system call on the
device

▶ The opposite of read, must read at most sz bytes from buf,
write it to the device, update off and return the number of
bytes written.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 213/476

Exchanging data with user space 1/3

▶ Kernel code isn't allowed to directly access user space
memory, using memcpy() or direct pointer dereferencing

▶ Doing so does not work on some architectures
▶ If the address passed by the application was invalid, the

application would segfault.
▶ Never trust user space. A malicious application could pass a

kernel address which you could overwrite with device data
(read case), or which you could dump to the device (write
case).

▶ To keep the kernel code portable, secure, and have proper
error handling, your driver must use special kernel functions to
exchange data with user space.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 214/476

http://lxr.free-electrons.com/ident?i=memcpy

Exchanging data with user space 2/3

▶ A single value
▶ get_user(v, p);

▶ The kernel variable v gets the value pointed by the user space
pointer p

▶ put_user(v, p);
▶ The value pointed by the user space pointer p is set to the

contents of the kernel variable v.

▶ A buffer
▶ unsigned long copy_to_user(void __user *to,

const void *from, unsigned long n);

▶ unsigned long copy_from_user(void *to,

const void __user *from, unsigned long n);

▶ The return value must be checked. Zero on success, non-zero
on failure. If non-zero, the convention is to return -EFAULT.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 215/476

http://lxr.free-electrons.com/ident?i=EFAULT

Exchanging data with user space 3/3

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 216/476

Zero copy access to user memory

▶ Having to copy data to or from an intermediate kernel buffer
can become expensive when the amount of data to transfer is
large (video).

▶ Zero copy options are possible:
▶ mmap() system call to allow user space to directly access

memory mapped I/O space. See our mmap() chapter.
▶ get_user_pages_fast() to get a mapping to user pages

without having to copy them. See http://j.mp/1sML7lP
(Kernel API doc). This API is more complex to use though.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 217/476

http://lxr.free-electrons.com/ident?i=get_user_pages_fast
http://j.mp/1sML7lP

unlocked_ioctl()

▶ long unlocked_ioctl(struct file *f,

unsigned int cmd, unsigned long arg)

▶ Associated to the ioctl() system call.
▶ Called unlocked because it didn't hold the Big Kernel Lock

(gone now).
▶ Allows to extend the driver capabilities beyond the limited

read/write API.
▶ For example: changing the speed of a serial port, setting video

output format, querying a device serial number...
▶ cmd is a number identifying the operation to perform
▶ arg is the optional argument passed as third argument of the

ioctl() system call. Can be an integer, an address, etc.
▶ The semantic of cmd and arg is driver-specific.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 218/476

ioctl() example: kernel side

static long phantom_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)

{
struct phm_reg r;
void __user *argp = (void __user *)arg;

switch (cmd) {
case PHN_SET_REG:

if (copy_from_user(&r, argp, sizeof(r)))
return -EFAULT;

/* Do something */
break;

case PHN_GET_REG:
if (copy_to_user(argp, &r, sizeof(r)))

return -EFAULT;
/* Do something */
break;

default:
return -ENOTTY;

}

return 0; }

Selected excerpt from drivers/misc/phantom.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 219/476

http://lxr.free-electrons.com/source/drivers/misc/phantom.c

Ioctl() Example: Application Side

int main(void)
{

int fd, ret;
struct phm_reg reg;

fd = open("/dev/phantom");
assert(fd > 0);

reg.field1 = 42;
reg.field2 = 67;

ret = ioctl(fd, PHN_SET_REG, & reg);
assert(ret == 0);

return 0;
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 220/476

Kernel frameworks for device drivers

The concept of kernel frameworks

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 221/476

Beyond character drivers: kernel frameworks

▶ Many device drivers are not implemented directly as character
drivers

▶ They are implemented under a framework, specific to a given
device type (framebuffer, V4L, serial, etc.)

▶ The framework allows to factorize the common parts of drivers
for the same type of devices

▶ From user space, they are still seen as character devices by the
applications

▶ The framework allows to provide a coherent user space
interface (ioctl, etc.) for every type of device, regardless of
the driver

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 222/476

Kernel Frameworks

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 223/476

Example: Framebuffer Framework

▶ Kernel option CONFIG_FB
▶ menuconfig FB

▶ tristate "Support for frame buffer devices"

▶ Implemented in C files in drivers/video/fbdev/core
▶ Implements a single character driver and defines the

user/kernel API
▶ First part of include/linux/fb.h

▶ Defines the set of operations a framebuffer driver must
implement and helper functions for the drivers

▶ struct fb_ops
▶ Second part of include/linux/fb.h

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 224/476

http://lxr.free-electrons.com/source/drivers/video/fbdev/core
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=fb_ops
http://lxr.free-electrons.com/source/include/linux/fb.h

Framebuffer driver operations

▶ Here are the operations a framebuffer driver can or must
implement, and define them in a struct fb_ops structure

static struct fb_ops xxxfb_ops = {
.owner = THIS_MODULE,
.fb_open = xxxfb_open,
.fb_read = xxxfb_read,
.fb_write = xxxfb_write,
.fb_release = xxxfb_release,
.fb_check_var = xxxfb_check_var,
.fb_set_par = xxxfb_set_par,
.fb_setcolreg = xxxfb_setcolreg,
.fb_blank = xxxfb_blank,
.fb_pan_display = xxxfb_pan_display,
.fb_fillrect = xxxfb_fillrect, /* Needed !!! */
.fb_copyarea = xxxfb_copyarea, /* Needed !!! */
.fb_imageblit = xxxfb_imageblit, /* Needed !!! */
.fb_cursor = xxxfb_cursor, /* Optional !!! */
.fb_rotate = xxxfb_rotate,
.fb_sync = xxxfb_sync,
.fb_ioctl = xxxfb_ioctl,
.fb_mmap = xxxfb_mmap,

};
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 225/476

http://lxr.free-electrons.com/ident?i=fb_ops

Framebuffer driver code

▶ In the probe() function, registration of the framebuffer device
and operations
static int xxxfb_probe (struct pci_dev *dev,

const struct pci_device_id *ent)
{

struct fb_info *info;
[...]
info = framebuffer_alloc(sizeof(struct xxx_par), device);
[...]
info->fbops = &xxxfb_ops;
[...]
if (register_framebuffer(info) > 0)

return -EINVAL;
[...]

}

▶ register_framebuffer() will create the character device
that can be used by user space applications with the generic
framebuffer API.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 226/476

http://lxr.free-electrons.com/ident?i=register_framebuffer

Driver-specific Data Structure

▶ Each framework defines a structure that a device driver must
register to be recognized as a device in this framework

▶ struct uart_port for serial ports, struct netdev for network
devices, struct fb_info for framebuffers, etc.

▶ In addition to this structure, the driver usually needs to store
additional information about its device

▶ This is typically done
▶ By subclassing the appropriate framework structure
▶ By storing a reference to the appropriate framework structure
▶ Or by including your information in the framework structure

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 227/476

http://lxr.free-electrons.com/ident?i=uart_port
http://lxr.free-electrons.com/ident?i=netdev
http://lxr.free-electrons.com/ident?i=fb_info

Driver-specific Data Structure Examples 1/2

▶ i.MX serial driver: struct imx_port is a subclass of
struct uart_port
struct imx_port {

struct uart_port port;
struct timer_list timer;
unsigned int old_status;
int txirq, rxirq, rtsirq;
unsigned int have_rtscts:1;
[...]

};

▶ ds1305 RTC driver: struct ds1305 has a reference to
struct rtc_device
struct ds1305 {

struct spi_device *spi;
struct rtc_device *rtc;
[...]

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 228/476

http://lxr.free-electrons.com/ident?i=imx_port
http://lxr.free-electrons.com/ident?i=uart_port
http://lxr.free-electrons.com/ident?i=ds1305
http://lxr.free-electrons.com/ident?i=rtc_device

Driver-specific Data Structure Examples 2/2

▶ rtl8150 network driver: struct rtl8150 has a reference to
struct net_device and is allocated within that framework
structure.
struct rtl8150 {

unsigned long flags;
struct usb_device *udev;
struct tasklet_struct tl;
struct net_device *netdev;
[...]

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 229/476

http://lxr.free-electrons.com/ident?i=rtl8150
http://lxr.free-electrons.com/ident?i=net_device

Link Between Structures 1/4

▶ The framework typically contains a struct device * pointer
that the driver must point to the corresponding
struct device

▶ It's the relation between the logical device (for example a
network interface) and the physical device (for example the
USB network adapter)

▶ The device structure also contains a void * pointer that the
driver can freely use.

▶ It's often used to link back the device to the higher-level
structure from the framework.

▶ It allows, for example, from the struct platform_device
structure, to find the structure describing the logical device

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 230/476

http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=platform_device

Link Between Structures 2/4

static int serial_imx_probe(struct platform_device *pdev)
{

struct imx_port *sport;
[...]
/* setup the link between uart_port and the struct
* device inside the platform_device */

sport->port.dev = &pdev->dev;
[...]
/* setup the link between the struct device inside
* the platform device to the imx_port structure */

platform_set_drvdata(pdev, sport);
[...]
uart_add_one_port(&imx_reg, &sport->port);

}

static int serial_imx_remove(struct platform_device *pdev)
{

/* retrieve the imx_port from the platform_device */
struct imx_port *sport = platform_get_drvdata(pdev);
[...]
uart_remove_one_port(&imx_reg, &sport->port);
[...]

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 231/476

Link Between Structures 3/4

static int ds1305_probe(struct spi_device *spi)
{

struct ds1305 *ds1305;

[...]

/* set up driver data */
ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
if (!ds1305)

return -ENOMEM;
ds1305->spi = spi;
spi_set_drvdata(spi, ds1305);

[...]

/* register RTC ... from here on, ds1305->ctrl needs locking */
ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",

&ds1305_ops, THIS_MODULE);

[...]
}

static int ds1305_remove(struct spi_device *spi)
{

struct ds1305 *ds1305 = spi_get_drvdata(spi);

[...]
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 232/476

Link Between Structures 4/4

static int rtl8150_probe(struct usb_interface *intf,
const struct usb_device_id *id)

{
struct usb_device *udev = interface_to_usbdev(intf);
rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));
dev = netdev_priv(netdev);

[...]

dev->udev = udev;
dev->netdev = netdev;

[...]

usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);

[...]
}

static void rtl8150_disconnect(struct usb_interface *intf)
{

rtl8150_t *dev = usb_get_intfdata(intf);

[...]
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 233/476

The input subsystem

The input
subsystem
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 234/476

What is input subsystem?

▶ The input subsystem takes care of all the input events coming
from the human user.

▶ Initially written to support the USB HID (Human Interface
Device) devices, it quickly grew up to handle all kind of inputs
(using USB or not): keyboards, mice, joysticks, touchscreens,
etc.

▶ The input subsystem is split in two parts:
▶ Device drivers: they talk to the hardware (for example via

USB), and provide events (keystrokes, mouse movements,
touchscreen coordinates) to the input core

▶ Event handlers: they get events from drivers and pass them
where needed via various interfaces (most of the time through
evdev)

▶ In user space it is usually used by the graphic stack such as
X.Org, Wayland or Android's InputManager.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 235/476

Input subsystem diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 236/476

Input subsystem overview

▶ Kernel option CONFIG_INPUT
▶ menuconfig INPUT

▶ tristate "Generic input layer (needed for keyboard,
mouse, ...)"

▶ Implemented in drivers/input/
▶ input.c, input-polldev.c, evbug.c

▶ Implements a single character driver and defines the
user/kernel API

▶ include/uapi/linux/input.h

▶ Defines the set of operations a input driver must implement
and helper functions for the drivers

▶ struct input_dev for the device driver part
▶ struct input_handler for the event handler part
▶ include/linux/input.h

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 237/476

http://lxr.free-electrons.com/source/drivers/input/
http://lxr.free-electrons.com/source/include/uapi/linux/input.h
http://lxr.free-electrons.com/ident?i=input_dev
http://lxr.free-electrons.com/ident?i=input_handler
http://lxr.free-electrons.com/source/include/linux/input.h

Input subsystem API 1/3

▶ An input device is described by a very long
struct input_dev structure, an excerpt is:

.

.

struct input_dev {
const char *name;
[...]
unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
[...]
int (*getkeycode)(struct input_dev *dev,

struct input_keymap_entry *ke);
[...]
int (*open)(struct input_dev *dev);
[...]
int (*event)(struct input_dev *dev, unsigned int type,

unsigned int code, int value);
[...]

};

▶ Before being used this struct must be allocated and initialized:
struct input_dev *input_allocate_device(void);

▶ After unregistering struct input_dev, it must be freed:
void input_free_device(struct input_dev *dev);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 238/476

http://lxr.free-electrons.com/ident?i=input_dev
http://lxr.free-electrons.com/ident?i=input_dev

Input subsystem API 2/3

▶ Depending on the type of event that will be generated, the
input bit fields evbit and keybit must be configured: For
example, for a button we only generate EV_KEY type events,
and from these only BTN_0 events code:

.

.
set_bit(EV_KEY, myinput_dev.evbit);
set_bit(BTN_0, myinput_dev.keybit);

▶ set_bit() is an atomic operation allowing to set a particular
bit to 1 (explained later).

▶ Once the input device is allocated and filled, the function to
register it is:
int input_register_device(struct input_dev *);

▶ When the driver is unloaded, the input device will be
unregistered using:
void input_unregister_device(struct input_dev *);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 239/476

http://lxr.free-electrons.com/ident?i=EV_KEY
http://lxr.free-electrons.com/ident?i=BTN_0
http://lxr.free-electrons.com/ident?i=set_bit

Input subsystem API 3/3

▶ The events are sent by the driver to the event handler using
input_event(struct input_dev *dev, unsigned int
type, unsigned int code, int value);

▶ The event types are documented in
Documentation/input/event-codes.txt

▶ An event is composed by one or several input data changes
(packet of input data changes) such as the button state, the
relative or absolute position along an axis, etc..

▶ After submitting potentially multiple events, the input core
must be notified by calling:
void input_sync(struct input_dev *dev):

▶ The input subsystem provides other wrappers such as
input_report_key(), input_report_abs(), ...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 240/476

http://free-electrons.com/kerneldoc/latest/input/event-codes.txt
http://lxr.free-electrons.com/ident?i=input_report_key
http://lxr.free-electrons.com/ident?i=input_report_abs

Polled input subclass

▶ The input subsystem provides a subclass supporting simple
input devices that do not raise interrupts but have to be
periodically scanned or polled to detect changes in their state.

▶ A polled input device is described by a
struct input_polled_dev structure:

.

.

struct input_polled_dev {
void *private;
void (*open)(struct input_polled_dev *dev);
void (*close)(struct input_polled_dev *dev);
void (*poll)(struct input_polled_dev *dev);
unsigned int poll_interval; /* msec */
unsigned int poll_interval_max; /* msec */
unsigned int poll_interval_min; /* msec */
struct input_dev *input;

/* private: */
struct delayed_work work;

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 241/476

http://lxr.free-electrons.com/ident?i=input_polled_dev

Polled input subsystem API

▶ Allocating/freeing the struct input_polled_dev structure is
done using

▶ input_allocate_polled_device()
▶ input_free_polled_device()

▶ Among the handlers of the struct input_polled_dev only
the poll() method is mandatory, this function polls the
device and posts input events.

▶ The fields id, name, evkey and keybit of the input field
must be initialized too.

▶ If none of the poll_interval fields are filled then the default
poll interval is 500ms.

▶ The device registration/unregistration is done with:
▶ input_register_polled_device(struct input_polled_dev

*dev).
▶ input_unregister_polled_device(struct input_polled_

dev *dev)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 242/476

http://lxr.free-electrons.com/ident?i=input_polled_dev
http://lxr.free-electrons.com/ident?i=input_allocate_polled_device
http://lxr.free-electrons.com/ident?i=input_free_polled_device
http://lxr.free-electrons.com/ident?i=input_polled_dev

evdev user space interface

▶ The main user space interface to input devices is the event
interface

▶ Each input device is represented as a /dev/input/event<X>
character device

▶ A user space application can use blocking and non-blocking
reads, but also select() (to get notified of events) after
opening this device.

▶ Each read will return struct input_event structures of the
following format:

.

.

struct input_event {
struct timeval time;
unsigned short type;
unsigned short code;
unsigned int value;

};

▶ A very useful application for input device testing is evtest,
from http://cgit.freedesktop.org/evtest/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 243/476

http://lxr.free-electrons.com/ident?i=input_event
http://cgit.freedesktop.org/evtest/

Practical lab - Expose the Nunchuk to user space

▶ Extend the Nunchuk driver to
expose the Nunchuk features to
user space applications, as an input
device.

▶ Test the operation of the Nunchuk
using sample user space
applications.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 244/476

Memory Management

Memory
Management
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 245/476

Physical and Virtual Memory

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 246/476

Virtual Memory Organization

▶ 1GB reserved for kernel-space
▶ Contains kernel code and core data

structures, identical in all address spaces
▶ Most memory can be a direct mapping

of physical memory at a fixed offset
▶ Complete 3GB exclusive mapping

available for each user space process
▶ Process code and data (program, stack,

...)
▶ Memory-mapped files
▶ Not necessarily mapped to physical

memory (demand fault paging used for
dynamic mapping to physical memory
pages)

▶ Differs from one address space to
another

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 247/476

Physical / virtual memory mapping

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 248/476

Accessing more physical memory

▶ Only less than 1GB memory addressable directly through
kernel virtual address space

▶ If more physical memory is present on the platform, part of
the memory will not be accessible by kernel space, but can be
used by user space

▶ To allow the kernel to access more physical memory:
▶ Change 1GB/3GB memory split (2GB/2GB)

(CONFIG_VMSPLIT_3G) ⇒ reduces total memory available for
each process

▶ Change for a 64 bit architecture ;-) See
Documentation/x86/x86_64/mm.txt for an example.

▶ Activate highmem support if available for your architecture:
▶ Allows kernel to map parts of its non-directly accessible

memory
▶ Mapping must be requested explicitly
▶ Limited addresses ranges reserved for this usage

▶ See http://lwn.net/Articles/75174/ for useful
explanations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 249/476

http://free-electrons.com/kerneldoc/latest/x86/x86_64/mm.txt
http://lwn.net/Articles/75174/

Notes on user space memory

▶ New user space memory is allocated either from the already
allocated process memory, or using the mmap system call

▶ Note that memory allocated may not be physically allocated:
▶ Kernel uses demand fault paging to allocate the physical page

(the physical page is allocated when access to the virtual
address generates a page fault)

▶ ... or may have been swapped out, which also induces a page
fault

▶ User space memory allocation is allowed to over-commit
memory (more than available physical memory) ⇒ can lead to
out of memory

▶ OOM killer kicks in and selects a process to kill to retrieve
some memory. That's better than letting the system freeze.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 250/476

Back to kernel memory

▶ Kernel memory allocators (see following slides) allocate
physical pages, and kernel allocated memory cannot be
swapped out, so no fault handling required for kernel memory.

▶ Most kernel memory allocation functions also return a kernel
virtual address to be used within the kernel space.

▶ Kernel memory low-level allocator manages pages. This is the
finest granularity (usually 4 KB, architecture dependent).

▶ However, the kernel memory management handles smaller
memory allocations through its allocator (see SLAB allocators
– used by kmalloc()).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 251/476

http://lxr.free-electrons.com/ident?i=kmalloc

Allocators in the Kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 252/476

Page Allocator

▶ Appropriate for medium-size allocations
▶ A page is usually 4K, but can be made greater in some

architectures (sh, mips: 4, 8, 16 or 64 KB, but not
configurable in x86 or arm).

▶ Buddy allocator strategy, so only allocations of power of two
number of pages are possible: 1 page, 2 pages, 4 pages, 8
pages, 16 pages, etc.

▶ Typical maximum size is 8192 KB, but it might depend on the
kernel configuration.

▶ The allocated area is virtually contiguous (of course), but also
physically contiguous. It is allocated in the identity-mapped
part of the kernel memory space.

▶ This means that large areas may not be available or hard to
retrieve due to physical memory fragmentation.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 253/476

Page Allocator API: Get free pages

▶ unsigned long get_zeroed_page(int flags)

▶ Returns the virtual address of a free page, initialized to zero
▶ flags: see the next pages for details.

▶ unsigned long __get_free_page(int flags)

▶ Same, but doesn't initialize the contents

▶ unsigned long __get_free_pages(int flags,

unsigned int order)

▶ Returns the starting virtual address of an area of several
contiguous pages in physical RAM, with order being
log2(number_of_pages).Can be computed from the size with
the get_order() function.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 254/476

http://lxr.free-electrons.com/ident?i=get_order

Page Allocator API: Free Pages

▶ void free_page(unsigned long addr)

▶ Frees one page.

▶ void free_pages(unsigned long addr,

unsigned int order)

▶ Frees multiple pages. Need to use the same order as in
allocation.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 255/476

Page Allocator Flags

The most common ones are:
▶ GFP_KERNEL

▶ Standard kernel memory allocation. The allocation may block
in order to find enough available memory. Fine for most needs,
except in interrupt handler context.

▶ GFP_ATOMIC
▶ RAM allocated from code which is not allowed to block

(interrupt handlers or critical sections). Never blocks, allows to
access emergency pools, but can fail if no free memory is
readily available.

▶ GFP_DMA
▶ Allocates memory in an area of the physical memory usable for

DMA transfers. See our DMA chapter.
▶ Others are defined in include/linux/gfp.h

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 256/476

http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lxr.free-electrons.com/ident?i=GFP_DMA
http://lxr.free-electrons.com/source/include/linux/gfp.h

SLAB Allocator 1/2

▶ The SLAB allocator allows to create caches, which contains a
set of objects of the same size

▶ The object size can be smaller or greater than the page size
▶ The SLAB allocator takes care of growing or reducing the size

of the cache as needed, depending on the number of allocated
objects. It uses the page allocator to allocate and free pages.

▶ SLAB caches are used for data structures that are present in
many many instances in the kernel: directory entries, file
objects, network packet descriptors, process descriptors, etc.

▶ See /proc/slabinfo

▶ They are rarely used for individual drivers.
▶ See include/linux/slab.h for the API

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 257/476

http://lxr.free-electrons.com/source/include/linux/slab.h

SLAB Allocator 2/2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 258/476

Different SLAB Allocators

▶ There are three different, but API compatible,
implementations of a SLAB allocator in the Linux kernel. A
particular implementation is chosen at configuration time.

▶ SLAB: legacy, well proven allocator.
Still the default in most ARM defconfig files.

▶ SLOB: much simpler. More space efficient but doesn't scale
well. Saves a few hundreds of KB in small systems (depends
on CONFIG_EXPERT)
Linux 4.4 on ARM: used in 5 defconfig files

▶ SLUB: more recent and simpler than SLAB, scaling much
better (in particular for huge systems) and creating less
fragmentation.
Linux 4.4 on ARM: used in 0 defconfig files

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 259/476

kmalloc Allocator

▶ The kmalloc allocator is the general purpose memory allocator
in the Linux kernel

▶ For small sizes, it relies on generic SLAB caches, named
kmalloc-XXX in /proc/slabinfo

▶ For larger sizes, it relies on the page allocator
▶ The allocated area is guaranteed to be physically contiguous
▶ The allocated area size is rounded up to the size of the

smallest SLAB cache in which it can fit (while using the SLAB
allocator directly allows to have more flexibility)

▶ It uses the same flags as the page allocator (GFP_KERNEL,
GFP_ATOMIC, GFP_DMA, etc.) with the same semantics.

▶ Maximum sizes, on x86 and arm (see http://j.mp/YIGq6W):
- Per allocation: 4 MB
- Total allocations: 128 MB

▶ Should be used as the primary allocator unless there is a
strong reason to use another one.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 260/476

http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lxr.free-electrons.com/ident?i=GFP_DMA
http://j.mp/YIGq6W

kmalloc API 1/2

▶ #include <linux/slab.h>

▶ void *kmalloc(size_t size, int flags);

▶ Allocate size bytes, and return a pointer to the area (virtual
address)

▶ size: number of bytes to allocate
▶ flags: same flags as the page allocator

▶ void kfree(const void *objp);

▶ Free an allocated area

▶ Example: (drivers/infiniband/core/cache.c)
struct ib_update_work *work;
work = kmalloc(sizeof *work, GFP_ATOMIC);
...
kfree(work);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 261/476

http://lxr.free-electrons.com/source/drivers/infiniband/core/cache.c

kmalloc API 2/2

▶ void *kzalloc(size_t size, gfp_t flags);

▶ Allocates a zero-initialized buffer

▶ void *kcalloc(size_t n, size_t size, gfp_t flags);

▶ Allocates memory for an array of n elements of size size, and
zeroes its contents.

▶ void *krealloc(const void *p, size_t new_size, gfp_t flags);

▶ Changes the size of the buffer pointed by p to new_size, by
reallocating a new buffer and copying the data, unless
new_size fits within the alignment of the existing buffer.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 262/476

devm_ kmalloc functions

▶ Automatically free the allocated buffers when the corresponding device or
module is unprobed.

▶ Need to have a reference to a struct device.
▶ void *devm_kmalloc(struct device *dev, size_t size, int flags);

▶ void *devm_kzalloc(struct device *dev, size_t size, int flags);

▶ void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags);

▶ void *devm_kfree(struct device *dev, void *p);

▶ Useful to immediately free an allocated buffer

See Documentation/driver-model/devres.txt for details about managed
device resources.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 263/476

http://lxr.free-electrons.com/ident?i=device
http://free-electrons.com/kerneldoc/latest/driver-model/devres.txt

vmalloc Allocator

▶ The vmalloc() allocator can be used to obtain virtually
contiguous memory zones, but not physically contiguous. The
requested memory size is rounded up to the next page.

▶ The allocated area is in the kernel space part of the address
space, but outside of the identically-mapped area

▶ Allocations of fairly large areas is possible (almost as big as
total available memory, see http://j.mp/YIGq6W again),
since physical memory fragmentation is not an issue, but areas
cannot be used for DMA, as DMA usually requires physically
contiguous buffers.

▶ Example use: to allocate kernel buffers to load module code.
▶ API in include/linux/vmalloc.h

▶ void *vmalloc(unsigned long size);

▶ Returns a virtual address
▶ void vfree(void *addr);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 264/476

http://lxr.free-electrons.com/ident?i=vmalloc
http://j.mp/YIGq6W
http://lxr.free-electrons.com/source/include/linux/vmalloc.h

Kernel memory debugging

▶ Kmemcheck
▶ Dynamic checker for access to uninitialized memory.
▶ Only available on x86 so far (Linux 3.17 status), but will help

to improve architecture independent code anyway.
▶ See Documentation/kmemcheck.txt for details.

▶ Kmemleak
▶ Dynamic checker for memory leaks
▶ This feature is available for all architectures.
▶ See Documentation/kmemleak.txt for details.

Both have a significant overhead. Only use them in development!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 265/476

http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://free-electrons.com/kerneldoc/latest/kmemleak.txt

I/O Memory and Ports

I/O Memory and
Ports
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 266/476

Port I/O vs. Memory-Mapped I/O

▶ MMIO
▶ Same address bus to address memory and I/O devices
▶ Access to the I/O devices using regular instructions
▶ Most widely used I/O method across the different architectures

supported by Linux
▶ PIO

▶ Different address spaces for memory and I/O devices
▶ Uses a special class of CPU instructions to access I/O devices
▶ Example on x86: IN and OUT instructions

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 267/476

MMIO vs PIO

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 268/476

Requesting I/O ports

▶ Tells the kernel which driver is using which I/O ports
▶ Allows to prevent other drivers from using the same I/O ports,

but is purely voluntary.
▶ struct resource *request_region(

unsigned long start,
unsigned long len,
char *name);

▶ Tries to reserve the given region and returns NULL if
unsuccessful.

▶ request_region(0x0170, 8, "ide1");

▶ void release_region(
unsigned long start,
unsigned long len);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 269/476

/proc/ioports example (x86)

0000-001f : dma1
0020-0021 : pic1
0040-0043 : timer0
0050-0053 : timer1
0070-0077 : rtc
0080-008f : dma page reg
00a0-00a1 : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
0376-0376 : ide1
03f6-03f6 : ide0
03f8-03ff : serial
0800-087f : 0000:00:1f.0
...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 270/476

Accessing I/O ports

▶ Functions to read/write bytes (b), word (w) and longs (l) to
I/O ports:

▶ unsigned in[bwl](unsigned long port)

▶ void out[bwl](value, unsigned long port)

▶ And the strings variants: often more efficient than the
corresponding C loop, if the processor supports such
operations!

▶ void ins[bwl](unsigned port, void *addr,

unsigned long count)

▶ void outs[bwl](unsigned port, void *addr,

unsigned long count)

▶ Examples
▶ read 8 bits

▶ oldlcr = inb(baseio + UART_LCR)

▶ write 8 bits
▶ outb(MOXA_MUST_ENTER_ENCHANCE, baseio + UART_LCR)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 271/476

Requesting I/O memory

▶ Functions equivalent to request_region() and
release_region(), but for I/O memory.

▶ struct resource *request_mem_region(
unsigned long start,
unsigned long len,
char *name);

▶ void release_mem_region(
unsigned long start,
unsigned long len);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 272/476

http://lxr.free-electrons.com/ident?i=request_region
http://lxr.free-electrons.com/ident?i=release_region

/proc/iomem example

00000000-0009efff : System RAM
0009f000-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000cffff : Video ROM
000f0000-000fffff : System ROM
00100000-3ffadfff : System RAM
00100000-0030afff : Kernel code
0030b000-003b4bff : Kernel data
3ffae000-3fffffff : reserved
40000000-400003ff : 0000:00:1f.1
40001000-40001fff : 0000:02:01.0
40400000-407fffff : PCI CardBus #03
40800000-40bfffff : PCI CardBus #03
a0000000-a0000fff : pcmcia_socket0
e8000000-efffffff : PCI Bus #01
...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 273/476

Mapping I/O memory in virtual memory

▶ Load/store instructions work with virtual addresses
▶ To access I/O memory, drivers need to have a virtual address

that the processor can handle, because I/O memory is not
mapped by default in virtual memory.

▶ The ioremap function satisfies this need:
#include <asm/io.h>

void __iomem *ioremap(phys_addr_t phys_addr,
unsigned long size);

void iounmap(void __iomem *addr);

▶ Caution: check that ioremap() doesn't return a NULL address!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 274/476

http://lxr.free-electrons.com/ident?i=ioremap

ioremap()

ioremap(0xFFEBC00, 4096) = 0xCDEFA000

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 275/476

Managed API

Using request_mem_region() and ioremap() in device drivers is
now deprecated. You should use the below "managed" functions
instead, which simplify driver coding and error handling:

▶ devm_ioremap()

▶ devm_iounmap()
▶ devm_ioremap_resource()

▶ Takes care of both the request and remapping operations!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 276/476

http://lxr.free-electrons.com/ident?i=request_mem_region
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/ident?i=devm_ioremap
http://lxr.free-electrons.com/ident?i=devm_iounmap
http://lxr.free-electrons.com/ident?i=devm_ioremap_resource

Accessing MMIO devices

▶ Directly reading from or writing to addresses returned by
ioremap() (pointer dereferencing) may not work on some
architectures.

▶ To do PCI-style, little-endian accesses, conversion being done
automatically
unsigned read[bwl](void *addr);
void write[bwl](unsigned val, void *addr);

▶ To do raw access, without endianness conversion
unsigned __raw_read[bwl](void *addr);
void __raw_write[bwl](unsigned val, void *addr);

▶ Example
▶ 32 bits write

__raw_writel(1 << KS8695_IRQ_UART_TX,
membase + KS8695_INTST);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 277/476

http://lxr.free-electrons.com/ident?i=ioremap

Avoiding I/O access issues

▶ Caching on I/O ports or memory already disabled
▶ Use the macros, they do the right thing for your architecture
▶ The compiler and/or CPU can reorder memory accesses,

which might cause troubles for your devices is they expect one
register to be read/written before another one.

▶ Memory barriers are available to prevent this reordering
▶ rmb() is a read memory barrier, prevents reads to cross the

barrier
▶ wmb() is a write memory barrier
▶ mb() is a read-write memory barrier

▶ Starts to be a problem with CPUs that reorder instructions
and SMP.

▶ See Documentation/memory-barriers.txt for details

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 278/476

http://lxr.free-electrons.com/ident?i=rmb
http://lxr.free-electrons.com/ident?i=wmb
http://lxr.free-electrons.com/ident?i=mb
http://free-electrons.com/kerneldoc/latest/memory-barriers.txt

/dev/mem

▶ Used to provide user space applications with direct access to
physical addresses.

▶ Usage: open /dev/mem and read or write at given offset.
What you read or write is the value at the corresponding
physical address.

▶ Used by applications such as the X server to write directly to
device memory.

▶ On x86, arm, arm64, tile, powerpc, unicore32, s390:
CONFIG_STRICT_DEVMEM option to restrict /dev/mem non-RAM
addresses, for security reasons (Linux 3.10 status).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 279/476

Practical lab - I/O Memory and Ports

▶ Add UART devices to the board
device tree

▶ Access I/O registers to control the
device and send first characters to
it.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 280/476

The misc subsystem

The misc
subsystem
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 281/476

Why a misc subsystem?

▶ The kernel offers a large number of frameworks covering a
wide range of device types: input, network, video, audio, etc.

▶ These frameworks allow to factorize common functionality
between drivers and offer a consistent API to user space
applications.

▶ However, there are some devices that really do not fit in any
of the existing frameworks.

▶ Highly customized devices implemented in a FPGA, or other
weird devices for which implementing a complete framework is
not useful.

▶ The drivers for such devices could be implemented directly as
raw character drivers.

▶ But there is a subsystem that makes this work a little bit
easier: the misc subsystem.

▶ It is really only a thin layer above the character driver API.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 282/476

Misc subsystem diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 283/476

Misc subsystem API (1/2)

▶ The misc subsystem API mainly provides two functions, to
register and unregister a single misc device:

▶ int misc_register(struct miscdevice * misc);
▶ int misc_deregister(struct miscdevice *misc);

▶ A misc device is described by a struct miscdevice structure:

struct miscdevice {
int minor;
const char *name;
const struct file_operations *fops;
struct list_head list;
struct device *parent;
struct device *this_device;
const char *nodename;
umode_t mode;

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 284/476

http://lxr.free-electrons.com/ident?i=miscdevice

Misc subsystem API (2/2)

The main fields to be filled in struct miscdevice are:
▶ minor, the minor number for the device, or

MISC_DYNAMIC_MINOR to get a minor number automatically
assigned.

▶ name, name of the device, which will be used to create the
device node if devtmpfs is used.

▶ fops, pointer to a struct file_operations structure, that
describes which functions implement the read, write, ioctl,
etc. operations.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 285/476

http://lxr.free-electrons.com/ident?i=miscdevice
http://lxr.free-electrons.com/ident?i=MISC_DYNAMIC_MINOR
http://lxr.free-electrons.com/ident?i=file_operations

User space API for misc devices

▶ misc devices are regular character devices
▶ The operations they support in user space depends on the

operations the kernel driver implements:
▶ The open() and close() system calls to open/close the

device.
▶ The read() and write() system calls to read/write to/from

the device.
▶ The ioctl() system call to call some driver-specific

operations.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 286/476

Practical lab - Output-only serial port driver

▶ Extend the driver started in the
previous lab by registering it into
the misc subsystem.

▶ Implement serial output
functionality through the misc
subsystem.

▶ Test serial output using user space
applications.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 287/476

Processes, scheduling and interrupts

Processes,
scheduling and
interrupts
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 288/476

Processes, scheduling and interrupts

Processes and scheduling

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 289/476

Process, thread?

▶ Confusion about the terms process, thread and task
▶ In Unix, a process is created using fork() and is composed of

▶ An address space, which contains the program code, data,
stack, shared libraries, etc.

▶ One thread, that starts executing the main() function.
▶ Upon creation, a process contains one thread

▶ Additional threads can be created inside an existing process,
using pthread_create()

▶ They run in the same address space as the initial thread of the
process

▶ They start executing a function passed as argument to
pthread_create()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 290/476

Process, thread: kernel point of view

▶ The kernel represents each thread running in the system by a
structure of type struct task_struct

▶ From a scheduling point of view, it makes no difference
between the initial thread of a process and all additional
threads created dynamically using pthread_create()

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 291/476

http://lxr.free-electrons.com/ident?i=task_struct

A thread life

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 292/476

Execution of system calls

The execution of system calls takes place in the context of the
thread requesting them.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 293/476

Processes, scheduling and interrupts

Sleeping

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 294/476

Sleeping

Sleeping is needed when a process (user space or kernel space) is
waiting for data.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 295/476

How to sleep 1/3

▶ Must declare a wait queue
▶ A wait queue will be used to store the list of threads waiting

for an event
▶ Static queue declaration

▶ useful to declare as a global variable
▶ DECLARE_WAIT_QUEUE_HEAD(module_queue);

▶ Or dynamic queue declaration
▶ Useful to embed the wait queue inside another data structure

wait_queue_head_t queue;
init_waitqueue_head(&queue);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 296/476

How to sleep 2/3

Several ways to make a kernel process sleep
▶ void wait_event(queue, condition);

▶ Sleeps until the task is woken up and the given C expression is
true. Caution: can't be interrupted (can't kill the user space
process!)

▶ int wait_event_killable(queue, condition);

▶ Can be interrupted, but only by a fatal signal (SIGKILL).
Returns -ERESTARSYS if interrupted.

▶ int wait_event_interruptible(queue, condition);

▶ Can be interrupted by any signal. Returns -ERESTARTSYS if
interrupted.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 297/476

http://lxr.free-electrons.com/ident?i=SIGKILL
http://lxr.free-electrons.com/ident?i=ERESTARSYS
http://lxr.free-electrons.com/ident?i=ERESTARTSYS

How to sleep 3/3

▶ int wait_event_timeout(queue, condition, timeout);

▶ Also stops sleeping when the task is woken up and the timeout
expired. Returns 0 if the timeout elapsed, non-zero if the
condition was met.

▶ int wait_event_interruptible_timeout(queue,
condition, timeout);

▶ Same as above, interruptible. Returns 0 if the timeout elapsed,
-ERESTARTSYS if interrupted, positive value if the condition
was met.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 298/476

http://lxr.free-electrons.com/ident?i=ERESTARTSYS

How to Sleep - Example

ret = wait_event_interruptible
(sonypi_device.fifo_proc_list,
kfifo_len(sonypi_device.fifo) != 0);

if (ret)
return ret;

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 299/476

Waking up!

Typically done by interrupt handlers when data sleeping processes
are waiting for become available.

▶ wake_up(&queue);
▶ Wakes up all processes in the wait queue

▶ wake_up_interruptible(&queue);
▶ Wakes up all processes waiting in an interruptible sleep on the

given queue

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 300/476

Exclusive vs. non-exclusive

▶ wait_event_interruptible() puts a task in a non-exclusive
wait.

▶ All non-exclusive tasks are woken up by wake_up() /
wake_up_interruptible()

▶ wait_event_interruptible_exclusive() puts a task in an
exclusive wait.

▶ wake_up() / wake_up_interruptible() wakes up all
non-exclusive tasks and only one exclusive task

▶ wake_up_all() / wake_up_interruptible_all() wakes up
all non-exclusive and all exclusive tasks

▶ Exclusive sleeps are useful to avoid waking up multiple tasks
when only one will be able to ``consume'' the event.

▶ Non-exclusive sleeps are useful when the event can ``benefit''
to multiple tasks.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 301/476

http://lxr.free-electrons.com/ident?i=wait_event_interruptible
http://lxr.free-electrons.com/ident?i=wake_up
http://lxr.free-electrons.com/ident?i=wake_up_interruptible
http://lxr.free-electrons.com/ident?i=wait_event_interruptible_exclusive
http://lxr.free-electrons.com/ident?i=wake_up
http://lxr.free-electrons.com/ident?i=wake_up_interruptible
http://lxr.free-electrons.com/ident?i=wake_up_all
http://lxr.free-electrons.com/ident?i=wake_up_interruptible_all

Sleeping and waking up - Implementation 1/2

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 302/476

Sleeping and waking up - Implementation 2/2

The scheduler doesn't keep evaluating the sleeping condition!
▶ wait_event(queue, condition);

▶ The process is put in the TASK_UNINTERRUPTIBLE state.

▶ wake_up(&queue);

▶ All processes waiting in queue are woken up, so they get
scheduled later and have the opportunity to evaluate the
condition again and go back to sleep if it is not met.

See include/linux/wait.h for implementation details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 303/476

http://lxr.free-electrons.com/ident?i=TASK_UNINTERRUPTIBLE
http://lxr.free-electrons.com/source/include/linux/wait.h

Processes, scheduling and interrupts

Interrupt Management

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 304/476

Registering an interrupt handler 1/2
The "managed" API is recommended:
int devm_request_irq(struct device *dev,

unsigned int irq,
irq_handler_t handler,
unsigned long irq_flags,
const char *devname,
void *dev_id);

▶ Register an interrupt handler.
▶ device for automatic freeing at device or module release time.
▶ irq is the requested IRQ channel. For platform devices, use

platform_get_irq() to retrieve the interrupt number.
▶ handler is a pointer to the IRQ handler
▶ irq_flags are option masks (see next slide)
▶ devname is the registered name
▶ dev_id is a pointer to some data. It cannot be NULL as it is used

as an identifier for free_irq() when using shared IRQs.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 305/476

http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=free_irq

Releasing an interrupt handler

void devm_free_irq(struct device *dev,
unsigned int irq, void *dev_id);

▶ Explicitly release an interrupt handler. Done automatically in
normal situations.

Defined in include/linux/interrupt.h

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 306/476

http://lxr.free-electrons.com/source/include/linux/interrupt.h

Registering an interrupt handler 2/2

Main irq_flags bit values
(can be combined, 0 when no flags are needed):

▶ IRQF_SHARED
▶ The interrupt channel can be shared by several devices.

Requires a hardware status register telling whether an IRQ was
raised or not.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 307/476

http://lxr.free-electrons.com/ident?i=IRQF_SHARED

Interrupt handler constraints

▶ No guarantee in which address space the system will be in
when the interrupt occurs: can't transfer data to and from
user space.

▶ Interrupt handler execution is managed by the CPU, not by
the scheduler. Handlers can't run actions that may sleep,
because there is nothing to resume their execution. In
particular, need to allocate memory with GFP_ATOMIC.

▶ Interrupt handlers are run with all interrupts disabled on the
local CPU (see http://lwn.net/Articles/380931).
Therefore, they have to complete their job quickly enough, to
avoiding blocking interrupts for too long.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 308/476

http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lwn.net/Articles/380931

/proc/interrupts on a Panda board
.

.

CPU0 CPU1
39: 4 0 GIC TWL6030-PIH
41: 0 0 GIC l3-dbg-irq
42: 0 0 GIC l3-app-irq
43: 0 0 GIC prcm
44: 20294 0 GIC DMA
52: 0 0 GIC gpmc
...
IPI0: 0 0 Timer broadcast interrupts
IPI1: 23095 25663 Rescheduling interrupts
IPI2: 0 0 Function call interrupts
IPI3: 231 173 Single function call interrupts
IPI4: 0 0 CPU stop interrupts
LOC: 196407 136995 Local timer interrupts
Err: 0

Note: interrupt numbers shown on the left-most column are virtual numbers
when the Device Tree is used. The real physical interrupt numbers are either
shown as an additional column, or can be seen in
/sys/kernel/debug/irq_domain_mapping.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 309/476

Interrupt handler prototype

▶ irqreturn_t foo_interrupt(int irq, void *dev_id)

▶ irq, the IRQ number
▶ dev_id, the opaque pointer that was passed to

devm_request_irq()

▶ Return value
▶ IRQ_HANDLED: recognized and handled interrupt
▶ IRQ_NONE: not on a device managed by the module. Useful to

share interrupt channels and/or report spurious interrupts to
the kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 310/476

http://lxr.free-electrons.com/ident?i=devm_request_irq
http://lxr.free-electrons.com/ident?i=IRQ_HANDLED
http://lxr.free-electrons.com/ident?i=IRQ_NONE

Typical interrupt handler's job

▶ Acknowledge the interrupt to the device (otherwise no more
interrupts will be generated, or the interrupt will keep firing
over and over again)

▶ Read/write data from/to the device
▶ Wake up any waiting process waiting for the completion of an

operation, typically using wait queues
wake_up_interruptible(&module_queue);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 311/476

Threaded interrupts
In 2.6.30, support for threaded interrupts has been added to the
Linux kernel

▶ The interrupt handler is executed inside a thread.
▶ Allows to block during the interrupt handler, which is often

needed for I2C/SPI devices as the interrupt handler needs to
communicate with them.

▶ Allows to set a priority for the interrupt handler execution,
which is useful for real-time usage of Linux

int devm_request_threaded_irq(
struct device *dev,
unsigned int irq,
irq_handler_t handler, irq_handler_t thread_fn
unsigned long flags, const char *name, void *dev);

▶ handler, ``hard IRQ'' handler
▶ thread_fn, executed in a thread

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 312/476

Top half and bottom half processing

▶ Splitting the execution of interrupt handlers in 2 parts
▶ Top half

▶ This is the real interrupt handler, which should complete as
quickly as possible since all interrupts are disabled. If possible,
take the data out of the device and schedule a bottom half to
handle it.

▶ Bottom half
▶ Is the general Linux name for various mechanisms which allow

to postpone the handling of interrupt-related work.
Implemented in Linux as softirqs, tasklets or workqueues.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 313/476

Top half and bottom half diagram

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 314/476

Softirqs

▶ Softirqs are a form of bottom half processing
▶ The softirqs handlers are executed with all interrupts enabled,

and a given softirq handler can run simultaneously on multiple
CPUs

▶ They are executed once all interrupt handlers have completed,
before the kernel resumes scheduling processes, so sleeping is
not allowed.

▶ The number of softirqs is fixed in the system, so softirqs are
not directly used by drivers, but by complete kernel
subsystems (network, etc.)

▶ The list of softirqs is defined in include/linux/interrupt.h:
HI, TIMER, NET_TX, NET_RX, BLOCK, BLOCK_IOPOLL, TASKLET,
SCHED, HRTIMER, RCU

▶ The HI and TASKLET softirqs are used to execute tasklets

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 315/476

http://lxr.free-electrons.com/source/include/linux/interrupt.h

Tasklets

▶ Tasklets are executed within the HI and TASKLET softirqs.
They are executed with all interrupts enabled, but a given
tasklet is guaranteed to execute on a single CPU at a time.

▶ A tasklet can be declared statically with the
DECLARE_TASKLET() macro or dynamically with the
tasklet_init() function. A tasklet is simply implemented as
a function. Tasklets can easily be used by individual device
drivers, as opposed to softirqs.

▶ The interrupt handler can schedule the execution of a tasklet
with

▶ tasklet_schedule() to get it executed in the TASKLET softirq
▶ tasklet_hi_schedule() to get it executed in the HI softirq

(higher priority)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 316/476

http://lxr.free-electrons.com/ident?i=DECLARE_TASKLET
http://lxr.free-electrons.com/ident?i=tasklet_init
http://lxr.free-electrons.com/ident?i=tasklet_schedule
http://lxr.free-electrons.com/ident?i=tasklet_hi_schedule

Tasklet Example: simplified atmel_serial.c 1/2

/* The tasklet function */
static void atmel_tasklet_func(unsigned long data) {

struct uart_port *port = (struct uart_port *)data;
[...]

}

/* Registering the tasklet */
init function(...) {

[...]
tasklet_init(&atmel_port->tasklet,

atmel_tasklet_func, (unsigned long)port);
[...]

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 317/476

Tasklet Example: simplified atmel_serial.c 2/2

/* Removing the tasklet */
cleanup function(...) {

[...]
tasklet_kill(&atmel_port->tasklet);
[...]

}

/* Triggering execution of the tasklet */
somewhere function(...) {

tasklet_schedule(&atmel_port->tasklet);
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 318/476

Workqueues

▶ Workqueues are a general mechanism for deferring work. It is
not limited in usage to handling interrupts.

▶ The function registered as workqueue is executed in a thread,
which means:

▶ All interrupts are enabled
▶ Sleeping is allowed

▶ A workqueue is registered with INIT_WORK() and typically
triggered with queue_work()

▶ The complete API, in include/linux/workqueue.h provides
many other possibilities (creating its own workqueue threads,
etc.)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 319/476

http://lxr.free-electrons.com/ident?i=INIT_WORK
http://lxr.free-electrons.com/ident?i=queue_work
http://lxr.free-electrons.com/source/include/linux/workqueue.h

Interrupt management summary

▶ Device driver
▶ When the device file is first opened, register an interrupt

handler for the device's interrupt channel.
▶ Interrupt handler

▶ Called when an interrupt is raised.
▶ Acknowledge the interrupt
▶ If needed, schedule a tasklet taking care of handling data.

Otherwise, wake up processes waiting for the data.
▶ Tasklet

▶ Process the data
▶ Wake up processes waiting for the data

▶ Device driver
▶ When the device is no longer opened by any process,

unregister the interrupt handler.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 320/476

Practical lab - Interrupts

▶ Adding read capability to the
character driver developed earlier.

▶ Register an interrupt handler.
▶ Waiting for data to be available in

the read file operation.
▶ Waking up the code when data are

available from the device.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 321/476

Concurrent Access to Resources: Locking

Concurrent Access
to Resources:
Locking
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 322/476

Sources of concurrency issues

▶ In terms of concurrency, the kernel has the same constraint as
a multi-threaded program: its state is global and visible in all
executions contexts

▶ Concurrency arises because of
▶ Interrupts, which interrupts the current thread to execute an

interrupt handler. They may be using shared resources.
▶ Kernel preemption, if enabled, causes the kernel to switch from

the execution of one system call to another. They may be
using shared resources.

▶ Multiprocessing, in which case code is really executed in
parallel on different processors, and they may be using shared
resources as well.

▶ The solution is to keep as much local state as possible and for
the shared resources, use locking.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 323/476

Concurrency protection with locks

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 324/476

Linux mutexes

▶ The kernel's main locking primitive
▶ The process requesting the lock blocks when the lock is

already held. Mutexes can therefore only be used in contexts
where sleeping is allowed.

▶ Mutex definition:
▶ #include <linux/mutex.h>

▶ Initializing a mutex statically:
▶ DEFINE_MUTEX(name);

▶ Or initializing a mutex dynamically:
▶ void mutex_init(struct mutex *lock);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 325/476

Locking and Unlocking Mutexes 1/2

▶ void mutex_lock(struct mutex *lock);

▶ Tries to lock the mutex, sleeps otherwise.
▶ Caution: can't be interrupted, resulting in processes you

cannot kill!

▶ int mutex_lock_killable(struct mutex *lock);

▶ Same, but can be interrupted by a fatal (SIGKILL) signal. If
interrupted, returns a non zero value and doesn't hold the
lock. Test the return value!!!

▶ int mutex_lock_interruptible(struct mutex *lock);

▶ Same, but can be interrupted by any signal.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 326/476

http://lxr.free-electrons.com/ident?i=SIGKILL

Locking and Unlocking Mutexes 2/2

▶ int mutex_trylock(struct mutex *lock);

▶ Never waits. Returns a non zero value if the mutex is not
available.

▶ int mutex_is_locked(struct mutex *lock);

▶ Just tells whether the mutex is locked or not.

▶ void mutex_unlock(struct mutex *lock);

▶ Releases the lock. Do it as soon as you leave the critical
section.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 327/476

Spinlocks

▶ Locks to be used for code that is not allowed to sleep
(interrupt handlers), or that doesn't want to sleep (critical
sections). Be very careful not to call functions which can
sleep!

▶ Originally intended for multiprocessor systems
▶ Spinlocks never sleep and keep spinning in a loop until the

lock is available.
▶ Spinlocks cause kernel preemption to be disabled on the CPU

executing them.
▶ The critical section protected by a spinlock is not allowed to

sleep.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 328/476

Initializing Spinlocks

▶ Statically
▶ DEFINE_SPINLOCK(my_lock);

▶ Dynamically
▶ void spin_lock_init(spinlock_t *lock);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 329/476

Using Spinlocks 1/2

▶ Several variants, depending on where the spinlock is called:
▶ void spin_lock(spinlock_t *lock);

▶ void spin_unlock(spinlock_t *lock);

▶ Doesn't disable interrupts. Used for locking in process context
(critical sections in which you do not want to sleep).

▶ void spin_lock_irqsave(spinlock_t *lock,

unsigned long flags);

▶ void spin_unlock_irqrestore(spinlock_t *lock,

unsigned long flags);

▶ Disables / restores IRQs on the local CPU.
▶ Typically used when the lock can be accessed in both process

and interrupt context, to prevent preemption by interrupts.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 330/476

Using Spinlocks 2/2

▶ void spin_lock_bh(spinlock_t *lock);

▶ void spin_unlock_bh(spinlock_t *lock);

▶ Disables software interrupts, but not hardware ones.
▶ Useful to protect shared data accessed in process context and

in a soft interrupt (bottom half).
▶ No need to disable hardware interrupts in this case.

▶ Note that reader / writer spinlocks also exist.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 331/476

Spinlock example

▶ Spinlock structure embedded into struct uart_port

struct uart_port {
spinlock_t lock;
/* Other fields */

};

▶ Spinlock taken/released with protection against interrupts
static unsigned int ulite_tx_empty

(struct uart_port *port) {
unsigned long flags;

spin_lock_irqsave(&port->lock, flags);
/* Do something */
spin_unlock_irqrestore(&port->lock, flags);

}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 332/476

http://lxr.free-electrons.com/ident?i=uart_port

Deadlock Situations

▶ They can lock up your system. Make sure they never happen!
▶ Don't call a function that can try to get access to the same

lock

▶ Holding multiple locks is risky!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 333/476

Kernel lock validator

▶ From Ingo Molnar and Arjan van de Ven
▶ Adds instrumentation to kernel locking code
▶ Detect violations of locking rules during system life, such as:

▶ Locks acquired in different order (keeps track of locking
sequences and compares them).

▶ Spinlocks acquired in interrupt handlers and also in process
context when interrupts are enabled.

▶ Not suitable for production systems but acceptable overhead in
development.

▶ See Documentation/locking/lockdep-design.txt for
details

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 334/476

http://free-electrons.com/kerneldoc/latest/locking/lockdep-design.txt

Alternatives to Locking

▶ As we have just seen, locking can have a strong negative
impact on system performance. In some situations, you could
do without it.

▶ By using lock-free algorithms like Read Copy Update (RCU).
▶ RCU API available in the kernel (See

http://en.wikipedia.org/wiki/RCU).
▶ When available, use atomic operations.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 335/476

http://en.wikipedia.org/wiki/RCU

Atomic Variables 1/2

▶ Useful when the shared resource is an integer value
▶ Even an instruction like n++ is not guaranteed to be atomic on

all processors!
▶ Atomic operations definitions

▶ #include <asm/atomic.h>

▶ atomic_t
▶ Contains a signed integer (at least 24 bits)

▶ Atomic operations (main ones)
▶ Set or read the counter:

▶ void atomic_set(atomic_t *v, int i);

▶ int atomic_read(atomic_t *v);

▶ Operations without return value:
▶ void atomic_inc(atomic_t *v);

▶ void atomic_dec(atomic_t *v);

▶ void atomic_add(int i, atomic_t *v);

▶ void atomic_sub(int i, atomic_t *v);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 336/476

http://lxr.free-electrons.com/ident?i=atomic_t

Atomic Variables 2/2

▶ Similar functions testing the result:
▶ int atomic_inc_and_test(...);

▶ int atomic_dec_and_test(...);

▶ int atomic_sub_and_test(...);

▶ Functions returning the new value:
▶ int atomic_inc_return(...);

▶ int atomic_dec_return(...);

▶ int atomic_add_return(...);

▶ int atomic_sub_return(...);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 337/476

Atomic Bit Operations

▶ Supply very fast, atomic operations
▶ On most platforms, apply to an unsigned long * type.
▶ Apply to a void * type on a few others.
▶ Set, clear, toggle a given bit:

▶ void set_bit(int nr, unsigned long * addr);

▶ void clear_bit(int nr, unsigned long * addr);

▶ void change_bit(int nr, unsigned long * addr);

▶ Test bit value:
▶ int test_bit(int nr, unsigned long *addr);

▶ Test and modify (return the previous value):
▶ int test_and_set_bit(...);

▶ int test_and_clear_bit(...);

▶ int test_and_change_bit(...);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 338/476

Practical lab - Locking

▶ Add locking to the driver to
prevent concurrent accesses to
shared resources

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 339/476

Kernel Debugging

Kernel Debugging
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 340/476

Debugging Using Messages (1)

Three APIs are available
▶ The old printk(), no longer recommended for new debugging

messages
▶ The pr_*() family of functions: pr_emerg(), pr_alert(),

pr_crit(), pr_err(), pr_warning(), pr_notice(),
pr_info(), pr_cont()
and the special pr_debug() (see next pages)

▶ Defined in include/linux/printk.h
▶ They take a classic format string with arguments
▶ Example:

pr_info("Booting CPU %d\n", cpu);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 341/476

http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=pr_emerg
http://lxr.free-electrons.com/ident?i=pr_alert
http://lxr.free-electrons.com/ident?i=pr_crit
http://lxr.free-electrons.com/ident?i=pr_err
http://lxr.free-electrons.com/ident?i=pr_warning
http://lxr.free-electrons.com/ident?i=pr_notice
http://lxr.free-electrons.com/ident?i=pr_info
http://lxr.free-electrons.com/ident?i=pr_cont
http://lxr.free-electrons.com/ident?i=pr_debug
http://lxr.free-electrons.com/source/include/linux/printk.h

Debugging Using Messages (2)

▶ The dev_*() family of functions: dev_emerg(),
dev_alert(), dev_crit(), dev_err(), dev_warning(),
dev_notice(), dev_info()
and the special dev_dbg() (see next page)

▶ They take a pointer to struct device as first argument, and
then a format string with arguments

▶ Defined in include/linux/device.h
▶ To be used in drivers integrated with the Linux device model
▶ Example:

dev_info(&pdev->dev, "RTC enabled\n");

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 342/476

http://lxr.free-electrons.com/ident?i=dev_emerg
http://lxr.free-electrons.com/ident?i=dev_alert
http://lxr.free-electrons.com/ident?i=dev_crit
http://lxr.free-electrons.com/ident?i=dev_err
http://lxr.free-electrons.com/ident?i=dev_warning
http://lxr.free-electrons.com/ident?i=dev_notice
http://lxr.free-electrons.com/ident?i=dev_info
http://lxr.free-electrons.com/ident?i=dev_dbg
http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/source/include/linux/device.h

pr_debug() and dev_dbg()

▶ When the driver is compiled with DEBUG defined, all these
messages are compiled and printed at the debug level. DEBUG
can be defined by #define DEBUG at the beginning of the
driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG in
the Makefile

▶ When the kernel is compiled with CONFIG_DYNAMIC_DEBUG,
then these messages can dynamically be enabled on a per-file,
per-module or per-message basis

▶ See Documentation/dynamic-debug-howto.txt for details
▶ Very powerful feature to only get the debug messages you're

interested in.
▶ When DEBUG is not defined and CONFIG_DYNAMIC_DEBUG is not

enabled, these messages are not compiled in.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 343/476

http://free-electrons.com/kerneldoc/latest/dynamic-debug-howto.txt

Configuring The Priority

▶ Each message is associated to a priority, ranging from 0 for
emergency to 7 for debug.

▶ All the messages, regardless of their priority, are stored in the
kernel log ring buffer

▶ Typically accessed using the dmesg command
▶ Some of the messages may appear on the console, depending

on their priority and the configuration of
▶ The loglevel kernel parameter, which defines the priority

above which messages are displayed on the console. See
Documentation/kernel-parameters.txt for details.

▶ The value of /proc/sys/kernel/printk, which allows to
change at runtime the priority above which messages are
displayed on the console. See
Documentation/sysctl/kernel.txt for details.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 344/476

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt
http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt

DebugFS

A virtual filesystem to export debugging information to user space.
▶ Kernel configuration: DEBUG_FS

▶ Kernel hacking -> Debug Filesystem

▶ The debugging interface disappears when Debugfs is
configured out.

▶ You can mount it as follows:
▶ sudo mount -t debugfs none /sys/kernel/debug

▶ First described on http://lwn.net/Articles/115405/
▶ API documented in the Linux Kernel Filesystem API:

▶ Documentation/DocBook/filesystems/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 345/476

http://lwn.net/Articles/115405/
http://free-electrons.com/kerneldoc/latest/DocBook/filesystems/

DebugFS API
▶ Create a sub-directory for your driver:

▶ struct dentry *debugfs_create_dir(const char *name,

struct dentry *parent);

▶ Expose an integer as a file in DebugFS:
▶ struct dentry *debugfs_create_{u,x}{8,16,32}

(const char *name, mode_t mode, struct dentry *parent,

u8 *value);

▶ u for decimal representation
▶ x for hexadecimal representation

▶ Expose a binary blob as a file in DebugFS:
▶ struct dentry *debugfs_create_blob(const char *name,

mode_t mode, struct dentry *parent,

struct debugfs_blob_wrapper *blob);

▶ Also possible to support writable DebugFS files or customize
the output using the more generic debugfs_create_file()
function.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 346/476

http://lxr.free-electrons.com/ident?i=debugfs_create_file

Deprecated Debugging Mechanisms

Some additional debugging mechanisms, whose usage is now
considered deprecated

▶ Adding special ioctl() commands for debugging purposes.
DebugFS is preferred.

▶ Adding special entries in the proc filesystem. DebugFS is
preferred.

▶ Adding special entries in the sysfs filesystem. DebugFS is
preferred.

▶ Using printk(). The pr_*() and dev_*() functions are
preferred.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 347/476

http://lxr.free-electrons.com/ident?i=printk

Using Magic SysRq

▶ Allows to run multiple debug / rescue commands even when
the kernel seems to be in deep trouble

▶ On PC: [Alt] + [SysRq] + <character>
▶ On embedded: break character on the serial line +

<character>

▶ Example commands:
▶ s: sync all mounted filesystems
▶ b: reboot the system
▶ n: makes RT processes nice-able.
▶ w: shows the kernel stack of all sleeping processes
▶ t: shows the kernel stack of all running processes
▶ You can even register your own!

▶ Detailed in Documentation/sysrq.txt

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 348/476

http://free-electrons.com/kerneldoc/latest/sysrq.txt

kgdb - A Kernel Debugger

▶ The execution of the kernel is fully controlled by gdb from
another machine, connected through a serial line.

▶ Can do almost everything, including inserting breakpoints in
interrupt handlers.

▶ Feature supported for the most popular CPU architectures

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 349/476

Using kgdb 1/2

▶ Details available in the kernel documentation:
Documentation/DocBook/kgdb/

▶ Recommended to turn on CONFIG_FRAME_POINTER to aid in
producing more reliable stack backtraces in gdb.

▶ You must include a kgdb I/O driver. One of them is kgdb
over serial console (kgdboc: kgdb over console, enabled by
CONFIG_KGDB_SERIAL_CONSOLE)

▶ Configure kgdboc at boot time by passing to the kernel:
▶ kgdboc=<tty-device>,<bauds>.
▶ For example: kgdboc=ttyS0,115200

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 350/476

http://free-electrons.com/kerneldoc/latest/DocBook/kgdb/

Using kgdb 2/2

▶ Then also pass kgdbwait to the kernel: it makes kgdb wait for
a debugger connection.

▶ Boot your kernel, and when the console is initialized, interrupt
the kernel with Alt + SysRq + g.

▶ On your workstation, start gdb as follows:
▶ gdb ./vmlinux
▶ (gdb) set remotebaud 115200
▶ (gdb) target remote /dev/ttyS0

▶ Once connected, you can debug a kernel the way you would
debug an application program.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 351/476

Debugging with a JTAG Interface
Two types of JTAG dongles

▶ The ones offering a gdb compatible interface, over a serial port
or an Ethernet connection. gdb can directly connect to them.

▶ The ones not offering a gdb compatible interface are generally
supported by OpenOCD (Open On Chip Debugger):
http://openocd.sourceforge.net/

▶ OpenOCD is the bridge between the gdb debugging language
and the JTAG interface of the target CPU.

▶ See the very complete documentation:
http://openocd.org/documentation/

▶ For each board, you'll need an OpenOCD configuration file
(ask your supplier)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 352/476

http://openocd.sourceforge.net/
http://openocd.org/documentation/

More Kernel Debugging Tips

▶ Make sure CONFIG_KALLSYMS_ALL is enabled
▶ Is turned on by default
▶ To get oops messages with symbol names instead of raw

addresses
▶ On ARM, if your kernel doesn't boot or hangs without any

message, you can activate early debugging options
(CONFIG_DEBUG_LL and CONFIG_EARLYPRINTK), and add
earlyprintk to the kernel command line.

▶ Techniques to locate the C instruction which caused an oops:
http://j.mp/18oMRHx

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 353/476

http://j.mp/18oMRHx

Practical lab - Kernel debugging

▶ Use the dynamic printk feature.
▶ Add debugfs entries
▶ Load a broken driver and see it

crash
▶ Analyze the error information

dumped by the kernel.
▶ Disassemble the code and locate

the exact C instruction which
caused the failure.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 354/476

Porting the Linux Kernel to an ARM Board

Porting the Linux
Kernel to an ARM
Board
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 355/476

Porting the Linux kernel

▶ The Linux kernel supports a lot of different CPU architectures
▶ Each of them is maintained by a different group of

contributors
▶ See the MAINTAINERS file for details

▶ The organization of the source code and the methods to port
the Linux kernel to a new board are therefore very
architecture-dependent

▶ For example, some architectures use the Device Tree, some do
not.

▶ This presentation is focused on the ARM architecture only

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 356/476

http://lxr.free-electrons.com/source/MAINTAINERS

Architecture, CPU and Machine

▶ In the source tree, each architecture has its own directory
▶ arch/arm for the ARM architecture

▶ This directory contains generic ARM code
▶ boot, common, configs, kernel, lib, mm, nwfpe, vfp,

oprofile, tools
▶ And many directories for different SoC families

▶ mach-* directories: mach-pxa for PXA CPUs, mach-imx for
Freescale iMX CPUs, etc.

▶ Before the ARM cleanup, these directories contained support
for the SoC family (GPIO, clocks, pinmux, power
management, interrupt controller, etc.) and for the various
boards.

▶ Nowadays, they contain a lot less code, essentially a small
SoC description file, power management and SMP code.

▶ Some CPU types share some code, in directories named
plat-*

▶ Device Tree source files in arch/arm/boot/dts.
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 357/476

http://lxr.free-electrons.com/source/arch/arm
http://lxr.free-electrons.com/source/arch/arm/boot/dts

Before the Device Tree and ARM cleanup

▶ Until 2011, the ARM architecture wasn't using the Device
Tree, and a large portion of the SoC support was located in
arch/arm/mach-<foo>.

▶ Each board supported by the kernel was associated to an
unique machine ID.

▶ The entire list of machine ID can be downloaded at http://
www.arm.linux.org.uk/developer/machines/download.php
and one could freely register an additional one.

▶ The Linux kernel was defining a machine structure for each
board, which associates the machine ID with a set of
information and callbacks.

▶ The bootloader had to pass the machine ID to the kernel in a
specific ARM register.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 358/476

http://www.arm.linux.org.uk/developer/machines/download.php
http://www.arm.linux.org.uk/developer/machines/download.php

The Device Tree and the ARM cleanup

▶ As the ARM architecture gained significantly in popularity,
some major refactoring was needed.

▶ First, the Device Tree was introduced on ARM: instead of
using C code to describe SoCs and boards, a specialized
language is used.

▶ Second, many driver infrastructures were created to replace
custom code in arch/arm/mach-<foo>:

▶ The common clock framework in drivers/clk
▶ The pinctrl subsystem in drivers/pinctrl
▶ The irqchip subsystem in drivers/irqchip
▶ The clocksource subsystem in drivers/clocksource

▶ The amount of code in mach-<foo> has now significantly
reduced.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 359/476

http://lxr.free-electrons.com/source/drivers/clk
http://lxr.free-electrons.com/source/drivers/pinctrl
http://lxr.free-electrons.com/source/drivers/irqchip
http://lxr.free-electrons.com/source/drivers/clocksource

Adding the support for a new ARM board

Provided the SoC used on your board is supported by the Linux
kernel:

1. Create a Device Tree file in arch/arm/boot/dts, generally
named <soc-name>-<board-name>.dts, and make it include
the relevant SoC .dtsi file.

▶ Your Device Tree will describe all the SoC peripherals that are
enabled, the pin muxing, as well as all the devices on the
board.

2. Modify arch/arm/boot/dts/Makefile to make sure your
Device Tree gets built as a DTB during the kernel build.

3. If needed, develop the missing device drivers for the devices
that are on your board outside the SoC.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 360/476

http://lxr.free-electrons.com/source/arch/arm/boot/dts
http://lxr.free-electrons.com/source/arch/arm/boot/dts/Makefile

Example of the Freescale iMX28 SoCs

▶ The hardware platform used in this training is based on the
AM335x processor from Texas Instruments.

▶ This platform inherits from the OMAP family of TI, for which
kernel support has been around for a long time.

▶ Due to this, and the complexity of the platform, the AM335x
and OMAP support in the kernel hasn't fully migrated yet to
all the infrastructures created during the ARM cleanup.

▶ Therefore, to illustrate this section, we will take the example
of the Freescale iMX28 platform, on which Free Electrons has
worked specifically.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 361/476

Studying the Crystalfontz CFA-10036 platform

▶ Crystalfontz CFA-10036
▶ Uses the Freescale iMX28 SoC, from the

MXS family.
▶ 128MB of RAM
▶ 1 serial port, 1 LED
▶ 1 I2C bus, equipped with an OLED display
▶ 1 SD-Card slot

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 362/476

Crystalfontz CFA-10036 Device Tree, header

▶ Mandatory Device Tree language definition
../dts-v1/

▶ Include the .dtsi file describing the SoC
..#include "im28.dtsi"

▶ Start the root of the tree
../ {

▶ A human-readable string to describe the machine
.
.model = "Crystalfontz CFA-10036 Board";

▶ A list of compatible strings, from the most specific one to the
most general one. Can be used by kernel code to do a SoC or
board-specific check.

.

.compatible = "crystalfontz,cfa10036", "fsl,imx28";

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 363/476

Crystalfontz CFA-10036 Device Tree, chosen/memory

▶ Definition of the default kernel command line. Some
additional operating-system specific entries can be added in
chosen:

.

.

chosen {
bootargs = "console=ttyS0,115200 earlyprintk";

};

▶ Definition of the size and location of the RAM:
.

.

memory {
device_type = "memory";
reg = <0x40000000 0x8000000>; /* 128 MB */

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 364/476

Crystalfontz CFA-10036, bus/UART

▶ Start of the internal SoC peripherals.
.

.
apb@80000000 {

apbh@80000000 {
apbx@80040000 {

▶ The CFA-10036 has one debug UART, so the corresponding
controller is enabled:

.

.

duart: serial@80074000 {
pinctrl-names = "default";
pinctrl-0 = <&duart_pins_b>;
status = "okay";

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 365/476

Crystalfontz CFA-10036 Device Tree, Muxing

▶ Definition of a few pins that will be muxed as GPIO, for LEDs
and reset.

.

.

pinctrl@80018000 {
ssd1306_cfa10036: ssd1306-10036@0 {

reg = <0>;
fsl,pinmux-ids = <

0x2073 /* MX28_PAD_SSP0_D7__GPIO_2_7 */
>;
fsl,drive-strength = <0>;
fsl,voltage = <1>;
fsl,pull-up = <0>;

};

led_pins_cfa10036: leds-10036@0 {
reg = <0>;
fsl,pinmux-ids = <

0x3043 /* MX28_PAD_AUART1_RX__GPIO_3_4 */
>;
fsl,drive-strength = <0>;
fsl,voltage = <1>;
fsl,pull-up = <0>;

};
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 366/476

Crystalfontz CFA-10036 Device Tree, LED

▶ One LED is connected to this platform. Note the reference to
the led_pins_cfa10036 muxing configuration.

.

.

leds {
compatible = "gpio-leds";
pinctrl-names = "default";
pinctrl-0 = <&led_pins_cfa10036>;

power {
gpios = <&gpio3 4 1>;
default-state = "on";

};
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 367/476

Crystalfontz CFA-10036 Device Tree, SD Card/USB

▶ The platform also has a USB port
.

.

usb0: usb@80080000 {
pinctrl-names = "default";
pinctrl-0 = <&usb0_otg_cfa10036>;
status = "okay";

};

▶ and an SD Card slot:
.

.

ssp0: ssp@80010000 {
compatible = "fsl,imx28-mmc";
pinctrl-names = "default";
pinctrl-0 = <&mmc0_4bit_pins_a

&mmc0_cd_cfg &mmc0_sck_cfg>;
bus-width = <4>;
status = "okay";

};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 368/476

Crystalfontz CFA-10036 Device Tree, I2C bus

▶ An I2C bus, with a Solomon SSD1306 OLED display
connected on it:

.

.

i2c0: i2c@80058000 {
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins_b>;
clock-frequency = <400000>;
status = "okay";

ssd1306: oled@3c {
compatible = "solomon,ssd1306fb-i2c";
pinctrl-names = "default";
pinctrl-0 = <&ssd1306_cfa10036>;
reg = <0x3c>;
reset-gpios = <&gpio2 7 0>;
solomon,height = <32>;
solomon,width = <128>;
solomon,page-offset = <0>;

};
};

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 369/476

Crystalfontz CFA-10036 Device Tree, Breakout Boards

▶ The CFA-10036 can be plugged in other breakout boards, and
the device tree also allows us to describe this, using includes.
For example, the CFA-10057:

..#include "imx28-cfa10036.dts"

▶ This allows to have a layered description. This can also be
done for boards that have a lot in common, like the
BeagleBone and the BeagleBone Black, or the AT91
SAMA5D3-based boards.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 370/476

Crystalfontz CFA-10036: build the DTB

▶ To ensure that the Device Tree Blob gets built for this board
Device Tree Source, one need to ensure it is listed in
arch/arm/boot/dts/Makefile:

.

.

dtb-$(CONFIG_ARCH_MXS) += imx28-cfa10036.dtb \
imx28-cfa10037.dtb \
imx28-cfa10049.dtb \
imx28-cfa10055.dtb \
imx28-cfa10056.dtb \
imx28-cfa10057.dtb \
imx28-cfa10058.dtb \
imx28-evk.dtb

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 371/476

http://lxr.free-electrons.com/source/arch/arm/boot/dts/Makefile

Understanding the SoC support

▶ Let's consider another ARM platform here, the Marvell
Armada 370/XP.

▶ For this platform, the core of the SoC support is located in
arch/arm/mach-mvebu

▶ The board-v7.c file (see code on the next slide) contains the
"entry point" of the SoC definition, the DT_MACHINE_START ..
MACHINE_END definition:

▶ Defines the list of platform compatible strings that will match
this platform, in this case marvell,armada-370-xp. This
allows the kernel to know which DT_MACHINE structure to use
depending on the DTB that is passed at boot time.

▶ Defines various callbacks for the platform initialization, the
most important one being the .init_machine callback, which
calls of_platform_populate(). This function travels through
the Device Tree and instantiates all the devices.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 372/476

http://lxr.free-electrons.com/source/arch/arm/mach-mvebu
http://lxr.free-electrons.com/ident?i=of_platform_populate

arch/arm/mach-mvebu/board-v7.c

.

.

static void __init mvebu_dt_init(void)
{

if (of_machine_is_compatible("marvell,armadaxp"))
i2c_quirk();

of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
}

static const char * const armada_370_xp_dt_compat[] __initconst = {
"marvell,armada-370-xp",
NULL,

};

DT_MACHINE_START(ARMADA_370_XP_DT, "Marvell Armada 370/XP (Device Tree)")
.l2c_aux_val = 0,
.l2c_aux_mask = ~0,
.smp = smp_ops(armada_xp_smp_ops),
.init_machine = mvebu_dt_init,
.init_irq = mvebu_init_irq,
.restart = mvebu_restart,
.reserve = mvebu_memblock_reserve,
.dt_compat = armada_370_xp_dt_compat,

MACHINE_END

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 373/476

Components of the minimal SoC support

The minimal SoC support consists in
▶ An SoC entry point file, arch/arm/mach-mvebu/board-v7.c
▶ At least one SoC .dtsi DT and one board .dts DT, in

arch/arm/boot/dts

▶ A interrupt controller driver, drivers/irqchip/irq-armada-370-xp.c
▶ A timer driver, drivers/clocksource/time-armada-370-xp.c
▶ An earlyprintk implementation to get early messages from the console,

arch/arm/Kconfig.debug and arch/arm/include/debug

▶ A serial port driver in drivers/tty/serial. For Armada 370/XP, the
8250 driver drivers/tty/serial/8250 is used.

This allows to boot a minimal system up to user space, using a
root filesystem in initramfs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 374/476

http://lxr.free-electrons.com/source/arch/arm/mach-mvebu/board-v7.c
http://lxr.free-electrons.com/source/arch/arm/boot/dts
http://lxr.free-electrons.com/source/drivers/irqchip/irq-armada-370-xp.c
http://lxr.free-electrons.com/source/drivers/clocksource/time-armada-370-xp.c
http://lxr.free-electrons.com/source/arch/arm/Kconfig.debug
http://lxr.free-electrons.com/source/arch/arm/include/debug
http://lxr.free-electrons.com/source/drivers/tty/serial
http://lxr.free-electrons.com/source/drivers/tty/serial/8250

Extending the minimal SoC support

Once the minimal SoC support is in place, the following core
components should be added:

▶ Support for the clocks. Usually requires some clock drivers, as
well as DT representations of the clocks. See
drivers/clk/mvebu for Armada 370/XP clock drivers.

▶ Support for pin muxing, through the pinctrl subsystem. See
drivers/pinctrl/mvebu for the Armada 370/XP drivers.

▶ Support for GPIOs, through the GPIO subsystem. See
drivers/gpio/gpio-mvebu.c for the Armada 370/XP GPIO
driver.

▶ Support for SMP, through struct smp_operations. See
arch/arm/mach-mvebu/platsmp.c.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 375/476

http://lxr.free-electrons.com/source/drivers/clk/mvebu
http://lxr.free-electrons.com/source/drivers/pinctrl/mvebu
http://lxr.free-electrons.com/source/drivers/gpio/gpio-mvebu.c
http://lxr.free-electrons.com/ident?i=smp_operations
http://lxr.free-electrons.com/source/arch/arm/mach-mvebu/platsmp.c

Adding device drivers

Once the core pieces of the SoC support have been implemented,
the remaining part is to add drivers for the different hardware
blocks:

▶ Ethernet driver, in
drivers/net/ethernet/marvell/mvneta.c

▶ SATA driver, in drivers/ata/sata_mv.c

▶ I2C driver, in drivers/i2c/busses/i2c-mv64xxx.c

▶ SPI driver, in drivers/spi/spi-orion.c

▶ PCIe driver, in drivers/pci/host/pci-mvebu.c

▶ USB driver, in drivers/usb/host/ehci-orion.c

▶ etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 376/476

http://lxr.free-electrons.com/source/drivers/net/ethernet/marvell/mvneta.c
http://lxr.free-electrons.com/source/drivers/ata/sata_mv.c
http://lxr.free-electrons.com/source/drivers/i2c/busses/i2c-mv64xxx.c
http://lxr.free-electrons.com/source/drivers/spi/spi-orion.c
http://lxr.free-electrons.com/source/drivers/pci/host/pci-mvebu.c
http://lxr.free-electrons.com/source/drivers/usb/host/ehci-orion.c

Power Management

Power
Management
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 377/476

PM Building Blocks

▶ Several power management building blocks
▶ Suspend and resume
▶ CPUidle
▶ Runtime power management
▶ Frequency and voltage scaling
▶ Applications

▶ Independent building blocks that can be improved gradually
during development

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 378/476

Clock Framework (1)

▶ Generic framework to manage clocks used by devices in the
system

▶ Allows to reference count clock users and to shutdown the
unused clocks to save power

▶ Simple API described in
Documentation/DocBook/kernel-api/clk.html .

▶ clk_get() to get a reference to a clock
▶ clk_enable() to start the clock
▶ clk_disable() to stop the clock
▶ clk_put() to free the clock source
▶ clk_get_rate() to get the current rate

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 379/476

http://free-electrons.com/kerneldoc/latest/DocBook/kernel-api/clk.html
http://lxr.free-electrons.com/ident?i=clk_get
http://lxr.free-electrons.com/ident?i=clk_enable
http://lxr.free-electrons.com/ident?i=clk_disable
http://lxr.free-electrons.com/ident?i=clk_put
http://lxr.free-electrons.com/ident?i=clk_get_rate

Clock Framework (2)

The common clock framework
▶ Allows to declare the available clocks and their association to

devices in the Device Tree (preferred) or statically in the
source code (old method)

▶ Provides a debugfs representation of the clock tree
▶ Is implemented in drivers/clk

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 380/476

http://lxr.free-electrons.com/source/drivers/clk

Diagram overview of the common clock framework

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 381/476

Clock Framework (3)

The interface of the CCF divided into two halves:
▶ Common Clock Framework core

▶ Common definition of struct clk
▶ Common implementation of the clk.h API (defined in

drivers/clk/clk.c)
▶ struct clk_ops: operations invoked by the clk API

implementation
▶ Not supposed to be modified when adding a new driver

▶ Hardware-specific
▶ Callbacks registered with struct clk_ops and the

corresponding hardware-specific structures
▶ Has to be written for each new hardware clock

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 382/476

http://lxr.free-electrons.com/ident?i=clk
http://lxr.free-electrons.com/source/drivers/clk/clk.c
http://lxr.free-electrons.com/ident?i=clk_ops
http://lxr.free-electrons.com/ident?i=clk_ops

Clock Framework (4)

Hardware clock operations: device tree
▶ The device tree is the mandatory way to declare a clock

and to get its resources, as for any other driver using DT we
have to:

▶ Parse the device tree to setup the clock: the resources but
also the properties are retrieved.

▶ Declare the compatible clocks and associate it with an
initialization function using CLK_OF_DECLARE

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 383/476

http://lxr.free-electrons.com/ident?i=CLK_OF_DECLARE

Suspend and Resume

▶ Infrastructure in the kernel to support suspend and resume
▶ Platform hooks

▶ prepare(), enter(), finish(), valid() in a
struct platform_suspend_ops structure

▶ Registered using the suspend_set_ops() function
▶ See arch/arm/mach-at91/pm.c

▶ Device drivers
▶ suspend() and resume() hooks in the *_driver structures

(struct platform_driver, struct usb_driver, etc.)
▶ See drivers/net/ethernet/cadence/macb.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 384/476

http://lxr.free-electrons.com/ident?i=platform_suspend_ops
http://lxr.free-electrons.com/ident?i=suspend_set_ops
http://lxr.free-electrons.com/source/arch/arm/mach-at91/pm.c
http://lxr.free-electrons.com/ident?i=platform_driver
http://lxr.free-electrons.com/ident?i=usb_driver
http://lxr.free-electrons.com/source/drivers/net/ethernet/cadence/macb.c

Board-specific Power Management

▶ Typically takes care of battery and charging management.
▶ Also defines presuspend and postsuspend handlers.
▶ Example: arch/arm/mach-pxa/spitz_pm.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 385/476

http://lxr.free-electrons.com/source/arch/arm/mach-pxa/spitz_pm.c

arch/arm/mach-cpu/sleep.S

▶ Assembly code implementing CPU specific suspend and
resume code.

▶ Note: only found on arm, just 3 other occurrences in other
architectures, with other paths.

▶ First scenario: only a suspend function. The code goes in
sleep state (after enabling DRAM self-refresh), and continues
with resume code.

▶ Second scenario: suspend and resume functions. Resume
functions called by the bootloader.

▶ Examples to look at:
▶ arch/arm/mach-omap2/sleep24xx.S (1st case)
▶ arch/arm/mach-pxa/sleep.S (2nd case)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 386/476

http://lxr.free-electrons.com/source/arch/arm/mach-omap2/sleep24xx.S
http://lxr.free-electrons.com/source/arch/arm/mach-pxa/sleep.S

Triggering Suspend

▶ Whatever the power management implementation, CPU
specific struct suspend_ops functions are called by the
enter_state() function.

▶ enter_state() also takes care of executing the suspend and
resume functions for your devices.

▶ The execution of this function can be triggered from user
space. To suspend to RAM:

▶ echo mem > /sys/power/state

▶ Can also use the s2ram program from
http://suspend.sourceforge.net/

▶ Read kernel/power/suspend.c

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 387/476

http://lxr.free-electrons.com/ident?i=suspend_ops
http://lxr.free-electrons.com/ident?i=enter_state
http://lxr.free-electrons.com/ident?i=enter_state
http://suspend.sourceforge.net/
http://lxr.free-electrons.com/source/kernel/power/suspend.c

Runtime Power Management

▶ According to the kernel configuration interface: Enable
functionality allowing I/O devices to be put into energy-saving
(low power) states at run time (or autosuspended) after a
specified period of inactivity and woken up in response to a
hardware-generated wake-up event or a driver's request.

▶ New hooks must be added to the drivers:
runtime_suspend(), runtime_resume(), runtime_idle()

▶ API and details on Documentation/power/runtime_pm.txt

▶ See also Kevin Hilman's presentation at ELC Europe 2010:
http://elinux.org/images/c/cd/ELC-2010-khilman-
Runtime-PM.odp

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 388/476

http://free-electrons.com/kerneldoc/latest/power/runtime_pm.txt
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp

Saving Power in the Idle Loop

▶ The idle loop is what you run when there's nothing left to run
in the system.

▶ Implemented in all architectures in
arch/<arch>/kernel/process.c

▶ Example to read: look for cpu_idle in
arch/arm/kernel/process.c

▶ Each ARM cpu defines its own arch_idle function.
▶ The CPU can run power saving HLT instructions, enter NAP

mode, and even disable the timers (tickless systems).
▶ See also http://en.wikipedia.org/wiki/Idle_loop

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 389/476

http://lxr.free-electrons.com/source/arch/arm/kernel/process.c
http://en.wikipedia.org/wiki/Idle_loop

Managing Idle

Adding support for multiple idle levels
▶ Modern CPUs have several sleep states offering different

power savings with associated wake up latencies
▶ The dynamic tick feature allows to remove the periodic tick to

save power, and to know when the next event is scheduled, for
smarter sleeps.

▶ CPUidle infrastructure to change sleep states
▶ Platform-specific driver defining sleep states and transition

operations
▶ Platform-independent governors (ladder and menu)
▶ Available for x86/ACPI, not supported yet by all ARM cpus.

(look for cpuidle* files under arch/arm/)
▶ See Documentation/cpuidle/ in kernel sources.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 390/476

http://lxr.free-electrons.com/source/arch/arm/
http://free-electrons.com/kerneldoc/latest/cpuidle/

PowerTOP

https://01.org/powertop/

▶ With dynamic ticks, allows to fix parts of kernel code and
applications that wake up the system too often.

▶ PowerTOP allows to track the worst offenders
▶ Now available on ARM cpus implementing CPUidle
▶ Also gives you useful hints for reducing power.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 391/476

https://01.org/powertop/

Frequency and Voltage Scaling (1)

Frequency and voltage scaling possible through the cpufreq kernel
infrastructure.

▶ Generic infrastructure: drivers/cpufreq/cpufreq.c and
include/linux/cpufreq.h

▶ Generic governors, responsible for deciding frequency and
voltage transitions

▶ performance: maximum frequency
▶ powersave: minimum frequency
▶ ondemand: measures CPU consumption to adjust frequency
▶ conservative: often better than ondemand. Only increases

frequency gradually when the CPU gets loaded.
▶ userspace: leaves the decision to a user space daemon.

▶ This infrastructure can be controlled from
/sys/devices/system/cpu/cpu<n>/cpufreq/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 392/476

http://lxr.free-electrons.com/source/drivers/cpufreq/cpufreq.c
http://lxr.free-electrons.com/source/include/linux/cpufreq.h

Frequency and Voltage Scaling (2)

▶ CPU drivers in drivers/cpufreq. Example:
drivers/cpufreq/omap-cpufreq.c

▶ Must implement the operations of the cpufreq_driver
structure and register them using
cpufreq_register_driver()

▶ init() for initialization
▶ exit() for cleanup
▶ verify() to verify the user-chosen policy
▶ setpolicy() or target() to actually perform the frequency

change
▶ See Documentation/cpu-freq/ for useful explanations

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 393/476

http://lxr.free-electrons.com/source/drivers/cpufreq
http://lxr.free-electrons.com/source/drivers/cpufreq/omap-cpufreq.c
http://free-electrons.com/kerneldoc/latest/cpu-freq/

PM Quality Of Service interface

▶ Kernel and user mode interface for registering performance
expectations by drivers, subsystems and user space
applications.

▶ Two different PM QoS frameworks are available:
▶ PM QoS classes for CPU DMA latency, network latency and

and network throughput.
▶ The per-device PM QoS framework API to manage per-device

latency.
▶ According to these requirements, PM QoS allows kernel

drivers to adjust their power management
▶ See Documentation/power/pm_qos_interface.txt

▶ Still needs deploying in most drivers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 394/476

http://free-electrons.com/kerneldoc/latest/power/pm_qos_interface.txt

Regulator Framework

▶ Modern embedded hardware have hardware responsible for
voltage and current regulation

▶ The regulator framework allows to take advantage of this
hardware to save power when parts of the system are unused

▶ A consumer interface for device drivers (i.e users)
▶ Regulator driver interface for regulator drivers
▶ Machine interface for board configuration
▶ sysfs interface for user space

▶ See Documentation/power/regulator/ in kernel sources.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 395/476

http://free-electrons.com/kerneldoc/latest/power/regulator/

BSP Work for a New Board

In case you just need to create a BSP for your board, and your
CPU already has full PM support, you should just need to:

▶ Create clock definitions and bind your devices to them.
▶ Implement PM handlers (suspend, resume) in the drivers for

your board specific devices.
▶ Implement runtime PM handlers in your drivers.
▶ Implement board specific power management if needed

(mainly battery management)
▶ Implement regulator framework hooks for your board if

needed.
▶ All other parts of the PM infrastructure should be already

there: suspend / resume, cpuidle, cpu frequency and voltage
scaling.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 396/476

Useful Resources

▶ Documentation/power/ in the Linux kernel sources.
▶ Will give you many useful details.

▶ http://wiki.linaro.org/WorkingGroups/PowerManagement/
▶ Ongoing developments on the ARM platform.

▶ Introduction to kernel power management, Kevin Hilman,
Linaro

▶ http://elinux.org/images/d/dd/Intro_Kernel_PM.svg
▶ https://www.youtube.com/watch?v=Um0oRanCtzY

▶ Tips and ideas for prolonging battery life
▶ http://j.mp/fVdxKh

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 397/476

http://free-electrons.com/kerneldoc/latest/power/
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://elinux.org/images/d/dd/Intro_Kernel_PM.svg
https://www.youtube.com/watch?v=Um0oRanCtzY
http://j.mp/fVdxKh

The kernel development and contribution process

The kernel
development and
contribution
process
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 398/476

The kernel development and contribution process

Linux versioning scheme and
development process

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 399/476

Until 2.6 (1)

▶ One stable major branch every 2 or 3 years
▶ Identified by an even middle number
▶ Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

▶ One development branch to integrate new functionalities and
major changes

▶ Identified by an odd middle number
▶ Examples: 2.1.x, 2.3.x, 2.5.x
▶ After some time, a development version becomes the new base

version for the stable branch
▶ Minor releases once in while: 2.2.23, 2.5.12, etc.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 400/476

Until 2.6 (2)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 401/476

Changes since Linux 2.6

▶ Since 2.6.0, kernel developers have been able to introduce
lots of new features one by one on a steady pace, without
having to make disruptive changes to existing subsystems.

▶ Since then, there has been no need to create a new
development branch massively breaking compatibility with the
stable branch.

▶ Thanks to this, more features are released to users at a
faster pace.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 402/476

Versions since 2.6.0

▶ From 2003 to 2011, the official kernel versions were named
2.6.x.

▶ Linux 3.0 was released in July 2011
▶ Linux 4.0 was released in April 2015
▶ This is only a change to the numbering scheme

▶ Official kernel versions are now named x.y
(3.0, 3.1, 3.2, ..., 3.19, 4.0, 4.1, etc.)

▶ Stabilized versions are named x.y.z (3.0.2, 4.2.7, etc.)
▶ It effectively only removes a digit compared to the previous

numbering scheme

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 403/476

New development model

Using merge and bug fixing windows

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 404/476

New development model - Details

▶ After the release of a 4.x version (for example), a two-weeks
merge window opens, during which major additions are
merged.

▶ The merge window is closed by the release of test version
4.(x+1)-rc1

▶ The bug fixing period opens, for 6 to 10 weeks.
▶ At regular intervals during the bug fixing period, 4.(x+1)-rcY

test versions are released.
▶ When considered sufficiently stable, kernel 4.(x+1) is

released, and the process starts again.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 405/476

More stability for the kernel source tree

▶ Issue: bug and security fixes only released for
most recent stable kernel versions.

▶ Some people need to have a recent kernel,
but with long term support for security
updates.

▶ You could get long term support from a
commercial embedded Linux provider.

▶ You could reuse sources for the kernel used in
Ubuntu Long Term Support releases (5 years
of free security updates).

▶ The http://kernel.org front page shows
which versions will be supported for some
time (up to 2 or 3 years), and which ones
won't be supported any more ("EOL: End Of
Life")

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 406/476

http://kernel.org

What's new in each Linux release?
▶ The official list of changes for each Linux release is just a

huge list of individual patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

▶ Very difficult to find out the key changes and to get the global
picture out of individual changes.

▶ Fortunately, there are some useful resources available
▶ http://wiki.kernelnewbies.org/LinuxChanges (4.2 and

4.3 are missing)
▶ http://lwn.net
▶ http://linuxfr.org, for French readers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 407/476

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://linuxfr.org

The kernel development and contribution process

Contributing to the Linux kernel

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 408/476

Solving Issues

▶ If you face an issue, and it doesn't look specific to your work
but rather to the tools you are using, it is very likely that
someone else already faced it.

▶ Search the Internet for similar error reports.
▶ You have great chances of finding a solution or workaround,

or at least an explanation for your issue.
▶ Otherwise, reporting the issue is up to you!

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 409/476

Getting Help

▶ If you have a support contract, ask your vendor.
▶ Otherwise, don't hesitate to share your questions and issues

▶ Either contact the Linux mailing list for your architecture (like
linux-arm-kernel or linuxsh-dev...).

▶ Or contact the mailing list for the subsystem you're dealing
with (linux-usb-devel, linux-mtd...). Don't ask the maintainer
directly!

▶ Most mailing lists come with a FAQ page. Make sure you read
it before contacting the mailing list.

▶ Useful IRC resources are available too (for example on
http://kernelnewbies.org).

▶ Refrain from contacting the Linux Kernel mailing list, unless
you're an experienced developer and need advice.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 410/476

http://kernelnewbies.org

Reporting Linux Bugs

▶ First make sure you're using the latest version
▶ Make sure you investigate the issue as much as you can: see

Documentation/BUG-HUNTING

▶ Check for previous bugs reports. Use web search engines,
accessing public mailing list archives.

▶ If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the
MAINTAINERS file). Always give as many useful details as
possible.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 411/476

http://free-electrons.com/kerneldoc/latest/BUG-HUNTING
http://lxr.free-electrons.com/source/MAINTAINERS

How to Become a Kernel Developer?

Recommended resources
▶ See Documentation/SubmittingPatches for guidelines and

http://kernelnewbies.org/UpstreamMerge for very helpful
advice to have your changes merged upstream (by Rik van
Riel).

▶ Watch the Write and Submit your first Linux kernel Patch
talk by Greg. K.H:
http://www.youtube.com/watch?v=LLBrBBImJt4

▶ How to Participate in the Linux Community (by Jonathan
Corbet). A guide to the kernel development process
http://j.mp/tX2Ld6

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 412/476

http://free-electrons.com/kerneldoc/latest/SubmittingPatches
http://kernelnewbies.org/UpstreamMerge
http://www.youtube.com/watch?v=LLBrBBImJt4
http://j.mp/tX2Ld6

Contribute to the Linux Kernel (1)

▶ Clone Linus Torvalds' tree:
▶ git clone git://git.kernel.org/pub/scm/linux/kernel/

git/torvalds/linux.git

▶ Keep your tree up to date
▶ git pull

▶ Look at the master branch and check whether your issue /
change hasn't been solved / implemented yet. Also check the
maintainer's git tree and mailing list (see the MAINTAINERS
file).You may miss submissions that are not in mainline yet.

▶ If the maintainer has its own git tree, create a remote branch
tracking this tree. This is much better than creating another
clone (doesn't duplicate common stuff):

▶ git remote add linux-omap git://git.kernel.org/pub/
scm/linux/kernel/git/tmlind/linux-omap.git

▶ git fetch linux-omap

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 413/476

http://lxr.free-electrons.com/source/MAINTAINERS

Contribute to the Linux Kernel (2)

▶ Either create a new branch starting from the current commit
in the master branch:

▶ git checkout -b feature

▶ Or, if more appropriate, create a new branch starting from the
maintainer's master branch:

▶ git checkout -b feature linux-omap/master (remote tree
/ remote branch)

▶ In your new branch, implement your changes.
▶ Test your changes (must at least compile them).
▶ Run git add to add any new files to the index.
▶ Check that each file you modified is ready for submission:

▶ scripts/checkpatch.pl --strict --file <file>

▶ If needed, fix indenting rule violations:
▶ indent -linux <file>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 414/476

Configure git send-email

▶ Make sure you already have configured your name and e-mail
address (should be done before the first commit).

▶ git config --global user.name 'My Name'
▶ git config --global user.email me@mydomain.net

▶ Configure your SMTP settings. Example for a Google Mail
account:

▶ git config --
global sendemail.smtpserver smtp.googlemail.com

▶ git config --global sendemail.smtpserverport 587
▶ git config --global sendemail.smtpencryption tls
▶ git config --global sendemail.smtpuser jdoe@gmail.com
▶ git config --global sendemail.smtppass xxx

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 415/476

Contribute to the Linux Kernel (3)

▶ Group your changes by sets of logical changes, corresponding
to the set of patches that you wish to submit.

▶ Commit and sign these groups of changes (signing required by
Linux developers).

▶ git commit -s
▶ Make sure your first description line is a useful summary and

starts with the name of the modified subsystem. This first
description line will appear in your e-mails

▶ The easiest way is to look at previous commit summaries on
the main file you modify

▶ git log --pretty=oneline <path-to-file>

▶ Examples subject lines ([PATCH] omitted):
Documentation: prctl/seccomp_filter
PCI: release busn when removing bus
ARM: add support for xz kernel decompression

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 416/476

Contribute to the Linux Kernel (4)

▶ Remove previously generated patches
▶ rm 00*.patch

▶ Have git generate patches corresponding to your branch
▶ If your branch is based on mainline

▶ git format-patch master..<your branch>
▶ If your branch is based on a remote branch

▶ git format-patch <remote>/<branch>..<your branch>

▶ You can run a last check on all your patches (easy)
▶ scripts/checkpatch.pl --strict 00*.patch

▶ Now, send your patches to yourself
▶ git send-email --compose --

to me@mydomain.com 00*.patch

▶ If you have just one patch, or a trivial patch, you can remove
the empty line after In-Reply-To:. This way, you won't add
a summary e-mail introducing your changes (recommended
otherwise).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 417/476

Contribute to the Linux Kernel (5)

▶ Check that you received your e-mail properly, and that it looks
good.

▶ Now, find the maintainers for your patches
scripts/get_maintainer.pl ~/patches/00*.patch
Russell King <linux@arm.linux.org.uk> (maintainer:ARM PORT)
Nicolas Pitre <nicolas.pitre@linaro.org>
(commit_signer:1/1=100%)
linux-arm-kernel@lists.infradead.org (open list:ARM PORT)
linux-kernel@vger.kernel.org (open list)

▶ Now, send your patches to each of these people and lists
▶ git send-email --compose --to linux@arm.linux.org.uk

--to nicolas.pitre@linaro.org --to linux-arm-
kernel@lists.infradead.org --to linux-
kernel@vger.kernel.org 00*.patch

▶ Wait for replies about your changes, take the comments into
account, and resubmit if needed, until your changes are
eventually accepted.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 418/476

Contribute to the Linux Kernel (6)

▶ If you use git format-patch to produce your patches, you
will need to update your branch and may need to group your
changes in a different way (one patch per commit).

▶ Here's what we recommend
▶ Update your master branch

▶ git checkout master; git pull

▶ Back to your branch, implement the changes taking
community feedback into account. Commit these changes.

▶ Still in your branch: reorganize your commits and commit
messages

▶ git rebase --interactive origin/master
▶ git rebase allows to rebase (replay) your changes starting

from the latest commits in master. In interactive mode, it also
allows you to merge, edit and even reorder commits, in an
interactive way.

▶ Third, generate the new patches with git format-patch.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 419/476

Kernel Resources

Kernel Resources
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 420/476

Kernel Development News

Linux Weekly News
▶ http://lwn.net/

▶ The weekly digest off all Linux and free software information
sources

▶ In depth technical discussions about the kernel
▶ Subscribe to finance the editors ($7 / month)
▶ Articles available for non subscribers after 1 week.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 421/476

http://lwn.net/

Useful Reading (1)

Essential Linux Device Drivers, April 2008
▶ http://elinuxdd.com/

▶ By Sreekrishnan Venkateswaran, an
embedded IBM engineer with more than
10 years of experience

▶ Covers a wide range of topics not covered
by LDD: serial drivers, input drivers, I2C,
PCMCIA and Compact Flash, PCI, USB,
video drivers, audio drivers, block drivers,
network drivers, Bluetooth, IrDA, MTD,
drivers in user space, kernel debugging,
etc.

▶ Probably the most wide ranging and
complete Linux device driver book I've
read -- Alan Cox

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 422/476

http://elinuxdd.com/

Useful Reading (2)

Linux Device Drivers, 4th edition, November
2017 (estimated, keeps slipping!)

▶ http://shop.oreilly.com/product/
0636920030867.do

▶ By Jonathan Corbet, Alessandro Rubini,
Greg Kroah-Hartman, Jessica McKellar,
O'Reilly

▶ Expected to be a great book, if as good
as the previous edition (Free PDF:
http://free-electrons.com/
community/kernel/ldd3/), which is now
out of date.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 423/476

http://shop.oreilly.com/product/0636920030867.do
http://shop.oreilly.com/product/0636920030867.do
http://free-electrons.com/community/kernel/ldd3/
http://free-electrons.com/community/kernel/ldd3/

Useful Reading (3)

▶ Linux Kernel Development, 3rd Edition,
Jun 2010

▶ Robert Love, Novell Press
▶ http://free-

electrons.com/redir/lkd3-book.html
▶ A very synthetic and pleasant way to

learn about kernel subsystems (beyond
the needs of device driver writers)

▶ The Linux Programming Interface, Oct
2010

▶ Michael Kerrisk, No Starch Press
▶ http://man7.org/tlpi/
▶ A gold mine about the kernel interface

and how to use it

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 424/476

http://free-electrons.com/redir/lkd3-book.html
http://free-electrons.com/redir/lkd3-book.html
http://man7.org/tlpi/

Useful Online Resources

▶ Kernel documentation (Documentation/ in kernel sources)
▶ Available on line: http://free-electrons.com/kerneldoc/

(with HTML documentation extracted from source code)
▶ Linux kernel mailing list FAQ

▶ http://www.tux.org/lkml/
▶ Complete Linux kernel FAQ
▶ Read this before asking a question to the mailing list

▶ Kernel Newbies
▶ http://kernelnewbies.org/
▶ Glossary, articles, presentations, HOWTOs, recommended

reading, useful tools for people getting familiar with Linux
kernel or driver development.

▶ Kernel glossary
▶ http://kernelnewbies.org/KernelGlossary

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 425/476

http://free-electrons.com/kerneldoc/latest/
http://free-electrons.com/kerneldoc/
http://www.tux.org/lkml/
http://kernelnewbies.org/
http://kernelnewbies.org/KernelGlossary

International Conferences

▶ Embedded Linux Conference:
http://embeddedlinuxconference.com/

▶ Organized by the Linux Foundation:
▶ in California (in the spring)
▶ in Europe (October-November)
▶ Very interesting kernel and user space topics for embedded

systems developers.
▶ Presentation slides freely available

▶ Linux Plumbers: http://linuxplumbersconf.org
▶ Conference on the low-level plumbing of Linux: kernel, audio,

power management, device management, multimedia, etc.
▶ linux.conf.au: http://linux.org.au/conf/

▶ In Australia / New Zealand
▶ Features a few presentations by key kernel hackers.

▶ Don't miss our free conference videos on http://free-
electrons.com/community/videos/conferences/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 426/476

http://embeddedlinuxconference.com/
http://linuxplumbersconf.org
http://linux.org.au/conf/
http://free-electrons.com/community/videos/conferences/
http://free-electrons.com/community/videos/conferences/

ARM resources

▶ ARM Linux project: http://www.arm.linux.org.uk/
▶ Developer documentation:

http://www.arm.linux.org.uk/developer/
▶ linux-arm-kernel mailing list:

http://lists.infradead.org/mailman/listinfo/linux-
arm-kernel

▶ FAQ: http://www.arm.linux.org.uk/armlinux/mlfaq.php
▶ Linaro: http://linaro.org

▶ Many optimizations and resources for recent ARM CPUs
(toolchains, kernels, debugging utilities...).

▶ ARM Limited: http://www.linux-arm.com/
▶ Wiki with links to useful developer resources

▶ See our Embedded Linux course for details about toolchains:
http://free-electrons.com/training/embedded-linux/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 427/476

http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/developer/
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://www.arm.linux.org.uk/armlinux/mlfaq.php
http://linaro.org
http://www.linux-arm.com/
http://free-electrons.com/training/embedded-linux/

Last slides

Last slides
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 428/476

Last slide

Thank you!
And may the Source be with you

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 429/476

Backup slides

Backup slides
free electrons

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 430/476

Backup slides

DMA

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 431/476

DMA Integration

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 432/476

Peripheral DMA

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 433/476

DMA Controllers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 434/476

DMA descriptors

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 435/476

Backup slides

DMA Usage

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 436/476

Constraints with a DMA

▶ A DMA deals with physical addresses, so:
▶ Programming a DMA requires retrieving a physical address at

some point (virtual addresses are usually used)
▶ The memory accessed by the DMA shall be physically

contiguous
▶ The CPU can access memory through a data cache

▶ Using the cache can be more efficient (faster accesses to the
cache than the bus)

▶ But the DMA does not access to the CPU cache, so one need
to take care of cache coherency (cache content vs memory
content)

▶ Either flush or invalidate the cache lines corresponding to the
buffer accessed by DMA and processor at strategic times

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 437/476

DMA Memory Constraints

▶ Need to use contiguous memory in physical space.
▶ Can use any memory allocated by kmalloc() (up to 128 KB)

or __get_free_pages() (up to 8MB).
▶ Can use block I/O and networking buffers, designed to

support DMA.
▶ Can not use vmalloc() memory (would have to setup DMA

on each individual physical page).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 438/476

http://lxr.free-electrons.com/ident?i=kmalloc
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=vmalloc

Memory Synchronization Issues

Memory caching could interfere with DMA
▶ Before DMA to device

▶ Need to make sure that all writes to DMA buffer are
committed.

▶ After DMA from device
▶ Before drivers read from DMA buffer, need to make sure that

memory caches are flushed.
▶ Bidirectional DMA

▶ Need to flush caches before and after the DMA transfer.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 439/476

Linux DMA API

The kernel DMA utilities can take care of:
▶ Either allocating a buffer in a cache coherent area,
▶ Or making sure caches are flushed when required,
▶ Managing the DMA mappings and IOMMU (if any).
▶ See Documentation/DMA-API.txt for details about the Linux

DMA generic API.
▶ Most subsystems (such as PCI or USB) supply their own

DMA API, derived from the generic one. May be sufficient for
most needs.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 440/476

http://free-electrons.com/kerneldoc/latest/DMA-API.txt

Coherent or Streaming DMA Mappings

▶ Coherent mappings
▶ The kernel allocates a suitable buffer and sets the mapping for

the driver.
▶ Can simultaneously be accessed by the CPU and device.
▶ So, has to be in a cache coherent memory area.
▶ Usually allocated for the whole time the module is loaded.
▶ Can be expensive to setup and use on some platforms.

▶ Streaming mappings
▶ The kernel just sets the mapping for a buffer provided by the

driver.
▶ Use a buffer already allocated by the driver.
▶ Mapping set up for each transfer. Keeps DMA registers free on

the hardware.
▶ The recommended solution.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 441/476

Allocating Coherent Mappings

The kernel takes care of both buffer allocation and mapping
#include <asm/dma-mapping.h>

void * /* Output: buffer address */
dma_alloc_coherent(

struct device *dev, /* device structure */
size_t size, /* Needed buffer size in bytes */
dma_addr_t *handle, /* Output: DMA bus address */
gfp_t gfp /* Standard GFP flags */

);

void dma_free_coherent(struct device *dev,
size_t size, void *cpu_addr, dma_addr_t handle);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 442/476

Setting up streaming mappings

Works on buffers already allocated by the driver
#include <linux/dmapool.h>

dma_addr_t dma_map_single(
struct device *, /* device structure */
void *, /* input: buffer to use */
size_t, /* buffer size */
enum dma_data_direction /* Either DMA_BIDIRECTIONAL,

* DMA_TO_DEVICE or
* DMA_FROM_DEVICE */

);

void dma_unmap_single(struct device *dev, dma_addr_t handdle,
size_t size, enum dma_data_direction dir);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 443/476

DMA Streaming Mapping Notes

▶ When the mapping is active: only the device should access the
buffer (potential cache issues otherwise).

▶ The CPU can access the buffer only after unmapping!
▶ Another reason: if required, this API can create an

intermediate bounce buffer (used if the given buffer is not
usable for DMA).

▶ The Linux API also supports scatter / gather DMA streaming
mappings.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 444/476

Backup slides

DMA transfers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 445/476

Starting DMA transfers

▶ If the device you're writing a driver for is doing peripheral
DMA, no external API is involved.

▶ If it relies on an external DMA controller, you'll need to
▶ Ask the hardware to use DMA, so that it will drive its request

line
▶ Use Linux DMAEngine framework, especially its slave API

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 446/476

DMAEngine Slave API
▶ In order to start a DMA transfer, you need to call the

following functions from your driver
1. Request a channel for exclusive use with

dma_request_channel(), or one of its variants
2. Configure it for our use case, by filling a

struct dma_slave_config structure with various parameters
(source and destination adresses, accesses width, etc.) and
passing it as an argument to dmaengine_slave_config()

3. Start a new transaction with
dmaengine_prep_slave_single() or
dmaengine_prep_slave_sg()

4. Put the transaction in the driver pending queue using
dmaengine_submit()

5. And finally ask the driver to process all pending transactions
using dmaengine_issue_pending()

▶ Of course, this needs to be done in addition to the DMA
mapping seen previously

▶ Some frameworks abstract it away from you, such as SPI and
ASoC

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 447/476

http://lxr.free-electrons.com/ident?i=dma_request_channel
http://lxr.free-electrons.com/ident?i=dma_slave_config
http://lxr.free-electrons.com/ident?i=dmaengine_slave_config
http://lxr.free-electrons.com/ident?i=dmaengine_prep_slave_single
http://lxr.free-electrons.com/ident?i=dmaengine_prep_slave_sg
http://lxr.free-electrons.com/ident?i=dmaengine_submit
http://lxr.free-electrons.com/ident?i=dmaengine_issue_pending

Backup slides

mmap

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 448/476

mmap

▶ Possibility to have parts of the virtual address space of a
program mapped to the contents of a file

▶ Particularly useful when the file is a device file
▶ Allows to access device I/O memory and ports without having

to go through (expensive) read, write or ioctl calls
▶ One can access to current mapped files by two means:

▶ /proc/<pid>/maps
▶ pmap <pid>

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 449/476

/proc/<pid>/maps

start-end perm offset major:minor inode mapped file name
...
7f4516d04000-7f4516d06000 rw-s 1152a2000 00:05 8406 /dev/dri/card0
7f4516d07000-7f4516d0b000 rw-s 120f9e000 00:05 8406 /dev/dri/card0
...
7f4518728000-7f451874f000 r-xp 00000000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f451874f000-7f451894f000 ---p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f451894f000-7f4518951000 r--p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
7f4518951000-7f4518952000 rw-p 00029000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2
...
7f451da4f000-7f451dc3f000 r-xp 00000000 08:01 1549 /usr/bin/Xorg
7f451de3e000-7f451de41000 r--p 001ef000 08:01 1549 /usr/bin/Xorg
7f451de41000-7f451de4c000 rw-p 001f2000 08:01 1549 /usr/bin/Xorg
...

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 450/476

mmap Overview

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 451/476

How to Implement mmap - User Space

▶ Open the device file
▶ Call the mmap system call (see man mmap for details):

void * mmap(
void *start, /* Often 0, preferred starting address */
size_t length, /* Length of the mapped area */
int prot, /* Permissions: read, write, execute */
int flags, /* Options: shared mapping, private copy... */
int fd, /* Open file descriptor */
off_t offset /* Offset in the file */

);

▶ You get a virtual address you can write to or read from.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 452/476

How to Implement mmap - Kernel Space

▶ Character driver: implement an mmap file operation and add it
to the driver file operations:
int (*mmap) (

struct file *, /* Open file structure */
struct vm_area_struct * /* Kernel VMA structure */

);

▶ Initialize the mapping.
▶ Can be done in most cases with the remap_pfn_range()

function, which takes care of most of the job.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 453/476

http://lxr.free-electrons.com/ident?i=remap_pfn_range

remap_pfn_range()

▶ pfn: page frame number
▶ The most significant bits of the page address (without the bits

corresponding to the page size).

#include <linux/mm.h>

int remap_pfn_range(
struct vm_area_struct *, /* VMA struct */
unsigned long virt_addr, /* Starting user

* virtual address */
unsigned long pfn, /* pfn of the starting

* physical address */
unsigned long size, /* Mapping size */
pgprot_t prot /* Page permissions */

);

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 454/476

Simple mmap implementation

static int acme_mmap
(struct file * file, struct vm_area_struct *vma)

{
size = vma->vm_end - vma->vm_start;

if (size > ACME_SIZE)
return -EINVAL;

if (remap_pfn_range(vma,
vma->vm_start,
ACME_PHYS >> PAGE_SHIFT,
size,
vma->vm_page_prot))

return -EAGAIN;

return 0;
}

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 455/476

devmem2

▶ http://free-electrons.com/pub/mirror/devmem2.c, by
Jan-Derk Bakker

▶ Very useful tool to directly peek (read) or poke (write) I/O
addresses mapped in physical address space from a shell
command line!

▶ Very useful for early interaction experiments with a device,
without having to code and compile a driver.

▶ Uses mmap to /dev/mem.
▶ Examples (b: byte, h: half, w: word)

▶ devmem2 0x000c0004 h (reading)
▶ devmem2 0x000c0008 w 0xffffffff (writing)

▶ devmem is now available in BusyBox, making it even easier to
use.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 456/476

http://free-electrons.com/pub/mirror/devmem2.c

mmap Summary

▶ The device driver is loaded. It defines an mmap file operation.
▶ A user space process calls the mmap system call.
▶ The mmap file operation is called.
▶ It initializes the mapping using the device physical address.
▶ The process gets a starting address to read from and write to

(depending on permissions).
▶ The MMU automatically takes care of converting the process

virtual addresses into physical ones.
▶ Direct access to the hardware without any expensive read or

write system calls

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 457/476

Backup slides

Introduction to Git

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 458/476

What is Git?

▶ A version control system, like CVS, SVN, Perforce or
ClearCase

▶ Originally developed for the Linux kernel development, now
used by a large number of projects, including U-Boot,
GNOME, Buildroot, uClibc and many more

▶ Contrary to CVS or SVN, Git is a distributed version control
system

▶ No central repository
▶ Everybody has a local repository
▶ Local branches are possible, and very important
▶ Easy exchange of code between developers
▶ Well-suited to the collaborative development model used in

open-source projects

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 459/476

Install and Setup

▶ Git is available as a package in your distribution
▶ sudo apt-get install git

▶ Everything is available through the git command
▶ git has many commands, called using git <command>, where

<command> can be clone, checkout, branch, etc.
▶ Help can be found for a given command using

git help <command>

▶ Set up your name and e-mail address
▶ They will be referenced in each of your commits
▶ git config --global user.name 'My Name'
▶ git config --global user.email me@mydomain.net

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 460/476

Clone a Repository

▶ To start working on a project, you use Git's clone operation.
▶ With CVS or SVN, you would have used the checkout

operation, to get a working copy of the project (latest version)
▶ With Git, you get a full copy of the repository, including the

history, which allows to perform most of the operations offline.
▶ Cloning Linus Torvalds' Linux kernel repository

git clone git://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git

▶ git:// is a special Git protocol. Most repositories can also be
accessed using http://, but this is slower.

▶ After cloning, in linux/, you have the repository and a
working copy of the master branch.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 461/476

Explore the History
▶ git log will list all the commits. The latest commit is the

first.
commit 4371ee353c3fc41aad9458b8e8e627eb508bc9a3
Author: Florian Fainelli <florian@openwrt.org>
Date: Mon Jun 1 02:43:17 2009 -0700

MAINTAINERS: take maintainership of the cpmac Ethernet driver

This patch adds me as the maintainer of the CPMAC (AR7)
Ethernet driver.

Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>

▶ git log -p will list the commits with the corresponding diff
▶ The history in Git is not linear like in CVS or SVN, but it is a

graph of commits
▶ Makes it a little bit more complicated to understand at the

beginning
▶ But this is what allows the powerful features of Git

(distributed, branching, merging)
free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 462/476

Visualize the History: gitk

▶ gitk is a graphical tool that represents the history of the
current Git repository

▶ Can be installed from the gitk package

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 463/476

Visualize the History: cgit

▶ Another great tool is cgit, a web interface to Git. For the
kernel sources, it is used on http://git.kernel.org/

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 464/476

http://git.kernel.org/

Update your Repository

▶ The repository that has been cloned at the beginning will
change over time

▶ Updating your local repository to reflect the changes of the
remote repository will be necessary from time to time

▶ git pull
▶ Internally, does two things

▶ Fetch the new changes from the remote repository
(git fetch)

▶ Merge them in the current branch (git merge)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 465/476

Tags

▶ The list of existing tags can be found using
▶ git tag -l

▶ To check out a working copy of the repository at a given tag
▶ git checkout <tagname>

▶ To get the list of changes between a given tag and the latest
available version

▶ git log v2.6.30..master

▶ List of changes with diff on a given file between two tags
▶ git log -p v2.6.29..v2.6.30 MAINTAINERS

▶ With gitk
▶ gitk v2.6.30..master

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 466/476

Branches

▶ To start working on something, the best is to make a branch
▶ It is local-only, nobody except you sees the branch
▶ It is fast
▶ It allows to split your work on different topics, try something

and throw it away
▶ It is cheap, so even if you think you're doing something small

and quick, do a branch
▶ Unlike other version control systems, Git encourages the use

of branches. Don't hesitate to use them.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 467/476

Branches

▶ Create a branch
▶ git branch <branchname>

▶ Move to this branch
▶ git checkout <branchname>

▶ Both at once (create and switch to branch)
▶ git checkout -b <branchname>

▶ List of local branches
▶ git branch

▶ List of all branches, including remote branches
▶ git branch -a

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 468/476

Making Changes

▶ Edit a file with your favorite text editor
▶ Get the status of your working copy

▶ git status

▶ Git has a feature called the index, which allows you to stage
your commits before committing them. It allows to commit
only part of your modifications, by file or even by chunk.

▶ On each modified file
▶ git add <filename>

▶ Then commit. No need to be on-line or connected to commit
▶ Linux requires the -s option to sign your changes
▶ git commit -s

▶ If all modified files should be part of the commit
▶ git commit -as

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 469/476

Sharing Changes: E-mail

▶ The simplest way of sharing a few changes is to send patches
by e-mail

▶ The first step is to generate the patches
▶ git format-patch master..<yourbranch>
▶ Will generate one patch for each of the commits done on

<yourbranch>
▶ The patch files will be 0001-...., 0002-...., etc.

▶ The second step is to send these patches by e-mail
▶ git send-email --compose --

to email@domain.com 00*.patch

▶ Required Ubuntu package: git-email
▶ In a later slide, we will see how to use git config to set the

SMTP server, port, user and password.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 470/476

Sharing Changes: Your Own Repository

▶ If you do a lot of changes and want to ease collaboration with
others, the best is to have your own public repository

▶ Use a git hosting service on the Internet:
▶ GitLab (http://gitlab.com/)

▶ Open Source server. Proprietary and commercial extensions
available.

▶ GitHub (https://github.com/)
▶ For public repositories. Need to pay for private repositories.

▶ Publish on your own web server
▶ Easy to implement.
▶ Just needs git software on the server and ssh access.
▶ Drawback: only supports http cloning (less efficient)

▶ Set up your own git server
▶ Most flexible solution.
▶ Today's best solutions are gitolite

(https://github.com/sitaramc/gitolite) for the server
and cgit for the web interface
(http://git.zx2c4.com/cgit/about/).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 471/476

http://gitlab.com/
https://github.com/
https://github.com/sitaramc/gitolite
http://git.zx2c4.com/cgit/about/

Sharing changes: HTTP Hosting

▶ Create a bare version of your repository
▶ cd /tmp
▶ git clone --bare ~/project project.git
▶ touch project.git/git-daemon-export-ok

▶ Transfer the contents of project.git to a publicly-visible
place (reachable read-only by HTTP for everybody, and
read-write by you through SSH)

▶ Tell people to clone
http://yourhost.com/path/to/project.git

▶ Push your changes using
▶ git push ssh://yourhost.com/path/toproject.git

srcbranch:destbranch

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 472/476

Tracking Remote Trees

▶ In addition to the official Linus Torvalds tree, you might want
to use other development or experimental trees

▶ The OMAP tree at git://git.kernel.org/pub/scm/linux/
kernel/git/tmlind/linux-omap.git

▶ The stable realtime tree at git://git.kernel.org/pub/scm/
linux/kernel/git/rt/linux-stable-rt.git

▶ The git remote command allows to manage remote trees
▶ git remote add rt git://git.kernel.org/pub/scm/

linux/kernel/git/rt/linux-stable-rt.git

▶ Get the contents of the tree
▶ git fetch rt

▶ Switch to one of the branches
▶ git checkout rt/master

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 473/476

git-gui
http://www.git-scm.com/docs/git-gui

▶ A graphical interface to create and manipulate commits,
replacing multiple git command-line commands.

▶ Not meant for history browsing (opens gitk when needed).

▶ Example usage on Ubuntu/Debian:
sudo apt-get install git-gui
git gui blame Makefile

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 474/476

http://www.git-scm.com/docs/git-gui

About Git

▶ We have just seen the very basic features of Git.
▶ Many more interesting features are available (rebasing,

bisection, merging and more)
▶ References

▶ Git Manual
▶ http://schacon.github.com/git/user-manual.html

▶ Git Book (freely available on-line, or in print form)
▶ http://git-scm.com/book

▶ Git official website
▶ http://git-scm.com/

▶ Video: James Bottomley's tutorial on using Git
▶ http://free-electrons.com/pub/video/2008/ols/ols2008-

james-bottomley-git.ogg

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 475/476

http://schacon.github.com/git/user-manual.html
http://git-scm.com/book
http://git-scm.com/
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg

Practical lab - Going further: git

▶ Get familiar with git by
contributing to a real project: the
Linux kernel

▶ Send your patches to the
maintainers and mailing lists.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 476/476

	Generic course information
	Linux Kernel Introduction
	Linux features

	Embedded Linux Kernel Usage
	Linux kernel sources

	Kernel Source Code
	Linux Code and Device Drivers
	Linux sources
	Kernel source management tools
	Kernel configuration
	Compiling and installing the kernel for the host system
	Cross-compiling the kernel
	Using kernel modules

	Developing Kernel Modules
	Useful general-purpose kernel APIs
	Linux device and driver model
	Introduction
	Example of the USB bus
	Platform drivers

	Introduction to the I2C subsystem
	Introduction to pin muxing
	Kernel frameworks for device drivers
	User space vision of devices
	Character drivers
	The concept of kernel frameworks

	The input subsystem
	Memory Management
	I/O Memory and Ports
	The misc subsystem
	Processes, scheduling and interrupts
	Processes and scheduling
	Sleeping
	Interrupt Management

	Concurrent Access to Resources: Locking
	Kernel Debugging
	Porting the Linux Kernel to an ARM Board
	Power Management
	The kernel development and contribution process
	Linux versioning scheme and development process
	Contributing to the Linux kernel

	Kernel Resources
	Last slides
	Backup slides
	DMA
	DMA Usage
	DMA transfers
	mmap
	Introduction to Git

